Journal Article FZJ-2017-04118

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Imaging of amino acid transport in brain tumours: Positron emission tomography with O-(2-[ 18 F]fluoroethyl)- L -tyrosine (FET)

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2017
Academic Press Orlando, Fla.

Methods 130, 124-134 () [10.1016/j.ymeth.2017.05.019]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: The assessment of cerebral gliomas using magnetic resonance imaging (MRI) provides excellent structural images but cannot solve all diagnostic problems satisfactorily. The differentiation of tumour tissue from non-neoplastic changes may be difficult especially in the post-treatment phase. In recent years, positron emission tomography (PET) using radiolabelled amino acids has gained considerable interest as an additional tool to improve the diagnosis of cerebral gliomas and brain metastases. A key step for this advancement was the development of the F-18 labelled amino acid O-(2-[18F]fluoroethyl)-L-tyrosine (FET) which has spread rapidly in the last decade and replaced carbon-11 labelled amino acid tracers such as 11C-methyl-L-methionine (MET) in many centres in Europe. FET can be produced with high efficiency and distributed in a satellite concept like 2-[18F]fluoro-2-deoxy-D-glucose (FDG). Furthermore, FET exhibits favourable properties such as high in vivo stability, high tumour to background contrast and tissue specific tracer kinetics, which provides additional information for tumour grading or differential diagnosis. The Response Assessment in Neuro-Oncology (RANO) working group — an international effort to develop new standardized response criteria for clinical trials in brain tumours — has recently recommended the additional use of amino acid PET imaging for brain tumour management. FET PET can provide important diagnostic information in crucial situations such as the definition of biopsy site, the delineation of cerebral gliomas for therapy planning, sensitive monitoring of treatment response and an improved differentiation of tumour recurrence from treatment-related changes. In this article the basic information, methodological aspects and the actual status of clinical application of FET PET are reviewed.

Classification:

Contributing Institute(s):
  1. Physik der Medizinischen Bildgebung (INM-4)
  2. Kognitive Neurowissenschaften (INM-3)
  3. Nuklearchemie (INM-5)
  4. JARA-BRAIN (JARA-BRAIN)
Research Program(s):
  1. 573 - Neuroimaging (POF3-573) (POF3-573)

Appears in the scientific report 2017
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-BRAIN
Institute Collections > INM > INM-3
Institute Collections > INM > INM-4
Institute Collections > INM > INM-5
Workflow collections > Public records
Publications database

 Record created 2017-06-14, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)