Journal Article FZJ-2017-04301

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Solution of the Lindblad equation for spin helix states

 ;

2017
Inst. Woodbury, NY

Physical review / E 95(4), 042128 () [10.1103/PhysRevE.95.042128]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Using Lindblad dynamics we study quantum spin systems with dissipative boundary dynamics that generate a stationary nonequilibrium state with a nonvanishing spin current that is locally conserved except at the boundaries. We demonstrate that with suitably chosen boundary target states one can solve the many-body Lindblad equation exactly in any dimension. As solution we obtain pure states at any finite value of the dissipation strength and any system size. They are characterized by a helical stationary magnetization profile and a ballistic spin current which is independent of system size, even when the quantum spin system is not integrable. These results are derived in explicit form for the one-dimensional spin-1/2 Heisenberg chain and its higher-spin generalizations, which include the integrable spin-1 Zamolodchikov-Fateev model and the biquadratic Heisenberg chain.

Classification:

Contributing Institute(s):
  1. Theorie der Weichen Materie und Biophysik (ICS-2)
Research Program(s):
  1. 551 - Functional Macromolecules and Complexes (POF3-551) (POF3-551)

Appears in the scientific report 2017
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-5
Institute Collections > IAS > IAS-2
Workflow collections > Public records
ICS > ICS-2
Publications database
Open Access

 Record created 2017-06-26, last modified 2024-06-10