| Home > Publications database > Influence of impurity seeding on plasma burning scenarios for ITER |
| Journal Article | FZJ-2017-05356 |
; ; ;
2016
Elsevier
New York, NY [u.a.]
This record in other databases:
Please use a persistent id in citations: doi:10.1016/j.fusengdes.2016.02.102
Abstract: ITER expects to produce fusion power of about 0.5GW when operating with tungsten (W) divertor and beryllium (Be) wall. The influx of W from divertor can have significant influence on the discharge performance. This work describes predictive integrated numerical modeling of ITER discharges using the COREDIV code, which self-consistently solves the 1D radial energy and particle transport in the core region and 2D multi-fluid transport in the SOL. Calculations are performed for inductive ITER scenarios with intrinsic (W, Be and He) impurities and with seeded impurities (Ne and Ar) for different particle and heat transport in the core and different radial transport in the SOL. Simulations show, that only for sufficiently high radial diffusion (both in the core and in the SOL regions), it is possible to achieve H-mode mode plasma operation (power to SOL > L-H threshold power) with acceptable low level of power reaching the divertor plates. For argon seeding, the operational window is much smaller than for neon case due to enhanced core radiation (in comparison to Ne). Particle transport in the core characterized by the ratio of particle diffusion to thermal conductivity) has strong influence on the predicted ITER performance.
|
The record appears in these collections: |