Journal Article FZJ-2017-05935

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Post-deposition catalytic-doping of microcrystalline silicon thin layer for application in silicon heterojunction solar cell

 ;  ;  ;

2017
Elsevier Amsterdam [u.a.]

Thin solid films 635, 63 - 65 () [10.1016/j.tsf.2017.02.003]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: The silicon heterojunction (SHJ) solar cell is one of the most promising candidates for the next-generation high-efficiency mainstream photovoltaic technology. It consists of a crystalline silicon wafer coated with a stack of functional thin-films on both sides. Conventionally, intrinsic and doped hydrogenated amorphous silicon (a-Si:H) is used as the passivation layer and emitter or back surface field (BSF), respectively. Hydrogenated microcrystalline silicon (μc-Si:H) is considered as a more advantageous alternative to the a-Si:H emitter and BSF layers due to μc-Si:H's higher electrical conductivity giving rise to lower series resistance. In this contribution, we use the catalytic doping process, so-called “Cat-doping”, to post-dope n-μc-Si:H thin-layers in such a way that the conductivity can be increased to higher levels than those achievable in as-grown n-μc-Si:H for the application in SHJ solar cells. We show that the conductivity of the μc-Si:H films notably increases after the Cat-doping. We also investigated the impact of Cat-doping on the conductivity of the different μc-Si:H and on lifetime.

Classification:

Contributing Institute(s):
  1. Photovoltaik (IEK-5)
Research Program(s):
  1. 121 - Solar cells of the next generation (POF3-121) (POF3-121)
  2. HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) (HITEC-20170406)

Appears in the scientific report 2017
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-3
Workflow collections > Public records
IEK > IEK-5
Publications database

 Record created 2017-08-15, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)