Journal Article FZJ-2017-06968

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Phosphorus in water dispersible-colloids of forest soil profiles

 ;  ;  ;  ;  ;  ;

2018
Springer Science + Business Media B.V Dordrecht [u.a.]

Plant and soil 4227(1-2), 71-86 () [10.1007/s11104-017-3430-7]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Background and aimsNanoparticles and colloids affect the mobilisation and availability of phosphorus for plants and microorganisms in soils. We aimed to give a description of colloid sizes and composition from forest soil profiles and to evaluate the size-related quality of colloids for P fixation.MethodsWe investigated the size-dependent elemental composition and the P content of water-dispersible colloids (WDC) isolated from five German (beech-dominated) forest soil profiles of varying bulk soil P content by field-flow fractionation (FFF) coupled to various detectors.ResultsThree size fractions of WDC were separated: (i) nanoparticles <25 nm (NP) rich in Corg, (ii) fine colloids (25 nm–240 nm; FC) composed mainly of Corg, Fe and Al, probably as associations of Fe- and Al- (hydr)oxides and organic matter, and (iii) medium-sized colloids (240 nm–500 nm; MC), rich in Fe, Al and Si, indicating the presence of phyllosilicates. The P concentration in the overall WDC was up to 16 times higher compared to the bulk soil. The NP content decreased with increasing soil depth while the FC and MC showed a local maximum in the mineral topsoil due to soil acidification, although variant distributions in the subsoil were observed. NP were of great relevance for P binding in the organic surface layers, whereas FC- and MC-associated P dominated in the Ah horizon.ConclusionThe nanoparticles and colloids appeared to be of high relevance as P carriers in the forest surface soils studied, regardless of the bulk soil P content.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2018
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database

 Record created 2017-10-11, last modified 2022-09-30


Restricted:
Download fulltext PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)