Journal Article FZJ-2017-07263

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia

 ;  ;  ;  ;

2017
BioOne Washington, DC

Elementa 5(0), 50 - 72 () [10.1525/elementa.243]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Surface ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. The Tropospheric Ozone Assessment Report (TOAR) is designed to provide the research community with an up-to-date observation-based overview of tropospheric ozone’s global distribution and trends. The TOAR Surface Ozone Database contains ozone metrics at thousands of monitoring sites around the world, densely clustered across mid-latitude North America, western Europe and East Asia. Calculating regional ozone trends across these locations is challenging due to the uneven spacing of the monitoring sites across urban and rural areas. To meet this challenge we conducted a spatial and temporal trend analysis of several TOAR ozone metrics across these three regions for summertime (April–September) 2000–2014, using the generalized additive mixed model (GAMM). Our analysis indicates that East Asia has the greatest human and plant exposure to ozone pollution among investigating regions, with increasing ozone levels through 2014. The results also show that ozone mixing ratios continue to decline significantly over eastern North America and Europe, however, there is less evidence for decreases of daytime average ozone at urban sites. The present-day spatial coverage of ozone monitors in East Asia (South Korea and Japan) and eastern North America is adequate for estimating regional trends by simply taking the average of the individual trends at each site. However the European network is more sparsely populated across its northern and eastern regions and therefore a simple average of the individual trends at each site does not yield an accurate regional trend. This analysis demonstrates that the GAMM technique can be used to assess the regional representativeness of existing monitoring networks, indicating those networks for which a regional trend can be obtained by simply averaging the trends of all individual sites and those networks that require a more sophisticated statistical approach.

Classification:

Contributing Institute(s):
  1. Troposphäre (IEK-8)
Research Program(s):
  1. 243 - Tropospheric trace substances and their transformation processes (POF3-243) (POF3-243)

Appears in the scientific report 2017
Database coverage:
Medline ; Creative Commons Attribution CC BY (No Version) ; DOAJ ; OpenAccess ; BIOSIS Previews ; DOAJ Seal ; Thomson Reuters Master Journal List ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ICE > ICE-3
Workflow collections > Public records
IEK > IEK-8
Publications database
Open Access

 Record created 2017-10-31, last modified 2024-07-12