Journal Article FZJ-2017-07429

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

 ;  ;  ;  ;  ;  ;

2017
EGU Katlenburg-Lindau

Hydrology and earth system sciences 21(10), 5375 - 5383 () [10.5194/hess-21-5375-2017]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)

Appears in the scientific report 2017
Database coverage:
Creative Commons Attribution CC BY 3.0 ; DOAJ ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > IBG > IBG-3
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2017-11-10, letzte Änderung am 2021-01-29


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)