Journal Article FZJ-2017-07488

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effect of powder morphology on sintering kinetics, microstructure and mechanical properties of monazite ceramics

 ;  ;  ;  ;  ;  ;  ;  ;

2018
Elsevier Science Amsterdam [u.a.]

Journal of the European Ceramic Society 38(1), 227 - 234 () [10.1016/j.jeurceramsoc.2017.08.008]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: This work focuses on the effect of precursor morphology on the microstructural evolution of monazite-type lanthanum-europium phosphate ceramics during sintering, including grain growth rate, as well as correlations between microstructure, texture effects and their mechanical properties. Sintering kinetics of La0.5Eu0.5PO4 powders with two different grain morphologies (needle-shaped and spherical) was studied by an in situ HT-ESEM method at 1340°C. La0.5Eu0.5PO4 pellets with high density (99% of the theoretical density) were obtained for both precursor powders by hot pressing. Analysis of XRD data collected for the hot pressed pellets obtained from needle-shaped precursors revealed preferential orientation of the grains towards the (100) direction. Mechanical properties of the hot pressed pellets were studied by the Vickers indentation method. The dependence of microhardness and fracture toughness on microstructure and texture was investigated.

Classification:

Contributing Institute(s):
  1. Nukleare Entsorgung und Reaktorsicherheit (IEK-6)
Research Program(s):
  1. 161 - Nuclear Waste Management (POF3-161) (POF3-161)
  2. BMBF-02NUK021A - Verbundprojekt Conditioning: Grundlegende Untersuchungen zur Immobilisierung langlebiger Radionuklide mittels Einbau in endlagerrelevante Keramiken; Teilprojekt A (BMBF-02NUK021A) (BMBF-02NUK021A)

Appears in the scientific report 2018
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IFN > IFN-2
Workflow collections > Public records
IEK > IEK-6
Publications database

 Record created 2017-11-13, last modified 2024-07-12


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)