Journal Article FZJ-2017-07748

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Gray matter asymmetries in aging and neurodegeneration: A review and meta-analysis

 ;  ;  ;  ;  ;

2017
Wiley-Liss New York, NY

Human brain mapping 38(12), 5890 - 5904 () [10.1002/hbm.23772]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Inter-hemispheric asymmetries are a common phenomenon of the human brain. Some evidence suggests that neurodegeneration related to aging and disease may preferentially affect the left-usually language- and motor-dominant-hemisphere. Here, we used activation likelihood estimation meta-analysis to assess gray matter (GM) loss and its lateralization in healthy aging and in neurodegeneration, namely, mild cognitive impairment (MCI), Alzheimer's dementia (AD), Parkinson's disease (PD), and Huntington's disease (HD). This meta-analysis, comprising 159 voxel-based morphometry publications (enrolling 4,469 patients and 4,307 controls), revealed that GM decline appeared to be asymmetric at trend levels but provided no evidence for increased left-hemisphere vulnerability. Regions with asymmetric GM decline were located in areas primarily affected by neurodegeneration. In HD, the left putamen showed converging evidence for more pronounced atrophy, while no consistent pattern was found in PD. In MCI, the right hippocampus was more atrophic than its left counterpart, a pattern that reversed in AD. The stability of these findings was confirmed using permutation tests. However, due to the lenient threshold used in the asymmetry analysis, further work is needed to confirm our results and to provide a better understanding of the functional role of GM asymmetries, for instance in the context of cognitive reserve and compensation

Classification:

Contributing Institute(s):
  1. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 571 - Connectivity and Activity (POF3-571) (POF3-571)

Appears in the scientific report 2017
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-7
Workflow collections > Public records
Publications database

 Record created 2017-11-24, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)