Journal Article FZJ-2017-08291

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Task-related effective connectivity reveals that the cortical rich club gates cortex-wide communication

 ;  ;  ;  ;  ;

2018
Wiley-Liss New York, NY

Human brain mapping 39(3), 1246-1262 () [10.1101/185603]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Higher cognition may require the globally coordinated integration of specialized brain regions into functional networks. A collection of cortical hubs - referred to as the rich club - has been hypothesized to support task-specific functional integration. In the present paper, we use a whole-cortex model to estimate directed interactions between 68 cortical regions from fMRI activity for four different tasks (reflecting different cognitive domains) and resting state. We analyze the state-dependent input and output effective connectivity of the rich club and relate these to whole-cortex dynamics and network reconfigurations. We find that the cortical rich club exhibits an increase in outgoing effective connectivity during task performance as compared to rest while incoming connectivity remains constant. Increased outgoing connectivity targets a sparse set of peripheral regions with specific regions strongly overlapping between tasks. At the same time, community detection analyses reveal massive reorganizations of interactions among peripheral regions, including those serving as target of increased rich cub output. This suggests that while peripheral regions can play a role in several tasks, their interplay might nonetheless be task-specific. Furthermore, we observe that whole-cortex dynamics are faster during task as compared to rest. The decoupling effects usually accompanying faster dynamics appear to be counteracted by the increased rich club outgoing effective connectivity. Together our findings speak to a gating mechanism of the rich club that supports fast-paced information exchange among relevant peripheral regions in a task-specific and goal-directed fashion, while constantly listening to the whole network.

Classification:

Contributing Institute(s):
  1. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 571 - Connectivity and Activity (POF3-571) (POF3-571)

Appears in the scientific report 2018
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-7
Workflow collections > Public records
Publications database

 Record created 2017-12-12, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)