Journal Article FZJ-2017-08416

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effect of SO2 Addition on Air Oxidation Behavior of CM247 and CMSX-4 at 1050°C

 ;  ;  ;

2016
Springer Science + Business Media New York, NY

JOM 68(11), 2776 - 2785 () [10.1007/s11837-016-2072-1]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: In the present work, the oxidation behavior of two commercial Ni-base superalloys, CMSX-4 and CM247, in synthetic air with and without 2 vol.% SO2 at 1050°C has been studied. The corrosion reactions in the presence of SO2 could not be explained simply in terms of the contents of the main scale‐forming alloying elements, Cr and Al. The far better resistance of CMSX-4 is related to the formation of a rather pure and dense alumina scale after a very short period of transient oxidation. Rapid development of an alumina scale prevents access of molecular SO2 to the metal surface thus effectively suppressing internal sulfidation. In contrast, CM247 with a similar Al-content formed an Al-rich oxide scale with local intrusions and/or inhomogeneities caused by the underlying alloy microstructure, which deteriorated its resistance to internal sulfidation and resulted in rapid failure in synthetic air + 2% SO2.

Classification:

Contributing Institute(s):
  1. Werkstoffstruktur und -eigenschaften (IEK-2)
Research Program(s):
  1. 111 - Efficient and Flexible Power Plants (POF3-111) (POF3-111)

Appears in the scientific report 2017
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-1
Workflow collections > Public records
IEK > IEK-2
Publications database

 Record created 2017-12-15, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)