Journal Article FZJ-2018-00786

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Atomically dispersed hybrid nickel-iridium sites for photoelectrocatalysis

 ;  ;  ;  ;  ;  ;

2017
Nature Publishing Group London

Nature Communications 8(1), 1341 () [10.1038/s41467-017-01545-w]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Atomically dispersed supported catalysts can maximize atom efficiency and minimize cost. In spite of much progress in gas-phase catalysis, applying such catalysts in the field of renewable energy coupled with electrochemistry remains a challenge due to their limited durability in electrolyte. Here, we report a robust and atomically dispersed hybrid catalyst formed in situ on a hematite semiconductor support during photoelectrochemical oxygen evolution by electrostatic adsorption of soluble monomeric [Ir(OH)6]2− coupled to positively charged NiOx sites. The alkali-stable [Ir(OH)6]2− features synergistically enhanced activity toward water oxidation through NiOx that acts as a “movable bridge” of charge transfer from the hematite surface to the single iridium center. This hybrid catalyst sustains high performance and stability in alkaline electrolyte for >80 h of operation. Our findings provide a promising path for soluble catalysts that are weakly and reversibly bound to semiconductor-supported hole-accumulation inorganic materials under catalytic reaction conditions as hybrid active sites for photoelectrocatalysis.

Classification:

Contributing Institute(s):
  1. Physik Nanoskaliger Systeme (ER-C-1)
Research Program(s):
  1. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)

Appears in the scientific report 2017
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; BIOSIS Previews ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; IF >= 10 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > ER-C > ER-C-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2018-01-24, last modified 2021-01-29