Journal Article FZJ-2018-01738

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Thermal transport in binary colloidal glasses: Composition dependence and percolation assessment

 ;  ;  ;  ;  ;  ;

2018
Inst. Woodbury, NY

Physical review / E 97(2), 022612 () [10.1103/PhysRevE.97.022612]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The combination of various types of materials is often used to create superior composites that outperform the pure phase components. For any rational design, the thermal conductivity of the composite as a function of the volume fraction of the filler component needs to be known. When approaching the nanoscale, the homogeneous mixture of various components poses an additional challenge. Here, we investigate binary nanocomposite materials based on polymer latex beads and hollow silica nanoparticles. These form randomly mixed colloidal glasses on a sub-μm scale. We focus on the heat transport properties through such binary assembly structures. The thermal conductivity can be well described by the effective medium theory. However, film formation of the soft polymer component leads to phase segregation and a mismatch between existing mixing models. We confirm our experimental data by finite element modeling. This additionally allowed us to assess the onset of thermal transport percolation in such random particulate structures. Our study contributes to a better understanding of thermal transport through heterostructured particulate assemblies.

Classification:

Contributing Institute(s):
  1. Neutronenstreuung (Neutronenstreuung ; JCNS-1)
Research Program(s):
  1. 551 - Functional Macromolecules and Complexes (POF3-551) (POF3-551)
  2. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)
  3. 6215 - Soft Matter, Health and Life Sciences (POF3-621) (POF3-621)

Appears in the scientific report 2018
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2018-03-09, last modified 2023-02-17