Journal Article FZJ-2018-01790

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Evaluation of non-negative matrix factorization of grey matter in age prediction

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2018
Academic Press Orlando, Fla.

NeuroImage 173, 394-410 () [10.1016/j.neuroimage.2018.03.007]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: The relationship between grey matter volume (GMV) patterns and age can be captured by multivariate pattern analysis, allowing prediction of individuals' age based on structural imaging. Raw data, voxel-wise GMV and non-sparse factorization (with Principal Component Analysis, PCA) show good performance but do not promote relatively localized brain components for post-hoc examinations. Here we evaluated a non-negative matrix factorization (NNMF) approach to provide a reduced, but also interpretable representation of GMV data in age prediction frameworks in healthy and clinical populations.This examination was performed using three datasets: a multi-site cohort of life-span healthy adults, a single site cohort of older adults and clinical samples from the ADNI dataset with healthy subjects, participants with Mild Cognitive Impairment and patients with Alzheimer's disease (AD) subsamples. T1-weighted images were preprocessed with VBM8 standard settings to compute GMV values after normalization, segmentation and modulation for non-linear transformations only. Non-negative matrix factorization was computed on the GM voxel-wise values for a range of granularities (50–690 components) and LASSO (Least Absolute Shrinkage and Selection Operator) regression were used for age prediction. First, we compared the performance of our data compression procedure (i.e., NNMF) to various other approaches (i.e., uncompressed VBM data, PCA-based factorization and parcellation-based compression). We then investigated the impact of the granularity on the accuracy of age prediction, as well as the transferability of the factorization and model generalization across datasets. We finally validated our framework by examining age prediction in ADNI samples.

Classification:

Contributing Institute(s):
  1. Strukturelle und funktionelle Organisation des Gehirns (INM-1)
  2. Gehirn & Verhalten (INM-7)
Research Program(s):
  1. 571 - Connectivity and Activity (POF3-571) (POF3-571)
  2. HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) (720270)
  3. SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017) (HGF-SMHB-2013-2017)

Appears in the scientific report 2018
Database coverage:
Medline ; Embargoed OpenAccess ; BIOSIS Previews ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > INM > INM-7
Institutssammlungen > INM > INM-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2018-03-12, letzte Änderung am 2021-01-29


Published on 2019-03-06. Available in OpenAccess from 2020-03-06.:
Volltext herunterladen PDF
(zusätzliche Dateien)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)