Journal Article FZJ-2018-02179

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Predicting ligand binding poses for low-resolution membrane protein models: Perspectives from multiscale simulations

 ;  ;  ;  ;  ;

2018
Academic Press Orlando, Fla.

Biochemical and biophysical research communications 498(2), 366 - 374 () [10.1016/j.bbrc.2018.01.160] special issue: "Multiscale Modeling"

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Membrane receptors constitute major targets for pharmaceutical intervention. Drug design efforts rely on the identification of ligand binding poses. However, the limited experimental structural information available may make this extremely challenging, especially when only low-resolution homology models are accessible. In these cases, the predictions may be improved by molecular dynamics simulation approaches. Here we review recent developments of multiscale, hybrid molecular mechanics/coarse-grained (MM/CG) methods applied to membrane proteins. In particular, we focus on our in-house MM/CG approach. It is especially tailored for G-protein coupled receptors, the largest membrane receptor family in humans. We show that our MM/CG approach is able to capture the atomistic details of the receptor/ligand binding interactions, while keeping the computational cost low by representing the protein frame and the membrane environment in a highly simplified manner. We close this review by discussing ongoing improvements and challenges of the current implementation of our MM/CG code

Classification:

Contributing Institute(s):
  1. Computational Biomedicine (IAS-5)
  2. Computational Biomedicine (INM-9)
  3. Jara-Institut Quantum Information (INM-11)
Research Program(s):
  1. 571 - Connectivity and Activity (POF3-571) (POF3-571)
  2. 574 - Theory, modelling and simulation (POF3-574) (POF3-574)

Appears in the scientific report 2018
Database coverage:
Medline ; Embargoed OpenAccess ; BIOSIS Previews ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > INM > INM-11
Institutssammlungen > IAS > IAS-5
Institutssammlungen > INM > INM-9
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2018-04-03, letzte Änderung am 2024-06-25


Published on 2018-02-02. Available in OpenAccess from 2019-02-02.:
Volltext herunterladen PDF
(zusätzliche Dateien)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)