000844806 001__ 844806
000844806 005__ 20240619091236.0
000844806 0247_ $$2doi$$a10.1038/s41528-018-0027-z
000844806 0247_ $$2Handle$$a2128/19119
000844806 0247_ $$2altmetric$$aaltmetric:42479411
000844806 0247_ $$2WOS$$aWOS:000619050900015
000844806 037__ $$aFZJ-2018-02180
000844806 082__ $$a621.3
000844806 1001_ $$0P:(DE-Juel1)161548$$aAdly, Nouran$$b0
000844806 245__ $$aPrinted microelectrode arrays on soft materials: from PDMS to hydrogels
000844806 260__ $$aLondon$$bSpringer Nature$$c2018
000844806 3367_ $$2DRIVER$$aarticle
000844806 3367_ $$2DataCite$$aOutput Types/Journal article
000844806 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1529998124_18560
000844806 3367_ $$2BibTeX$$aARTICLE
000844806 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844806 3367_ $$00$$2EndNote$$aJournal Article
000844806 520__ $$aMicroelectrode arrays (MEAs) provide promising opportunities to study electrical signals in neuronal and cardiac cell networks, restore sensory function, or treat disorders of the nervous system. Nevertheless, most of the currently investigated devices rely on silicon or polymer materials, which neither physically mimic nor mechanically match the structure of living tissue, causing inflammatory response or loss of functionality. Here, we present a new method for developing soft MEAs as bioelectronic interfaces. The functional structures are directly deposited on PDMS-, agarose-, and gelatin-based substrates using ink-jet printing as a patterning tool. We demonstrate the versatility of this approach by printing high-resolution carbon MEAs on PDMS and hydrogels. The soft MEAs are used for in vitro extracellular recording of action potentials from cardiomyocyte-like HL-1 cells. Our results represent an important step toward the design of next-generation bioelectronic interfaces in a rapid prototyping approach.
000844806 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000844806 588__ $$aDataset connected to CrossRef
000844806 7001_ $$0P:(DE-Juel1)161523$$aWeidlich, Sabrina$$b1$$ufzj
000844806 7001_ $$0P:(DE-Juel1)161234$$aSeyock, Silke$$b2
000844806 7001_ $$0P:(DE-Juel1)161443$$aBrings, Fabian$$b3$$ufzj
000844806 7001_ $$0P:(DE-Juel1)138367$$aYakushenko, Alexey$$b4$$ufzj
000844806 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b5
000844806 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b6$$eCorresponding author$$ufzj
000844806 773__ $$0PERI:(DE-600)2925618-5$$a10.1038/s41528-018-0027-z$$gVol. 2, no. 1, p. 15$$n1$$p15$$tnpj flexible electronics$$v2$$x2397-4621$$y2018
000844806 8564_ $$uhttps://juser.fz-juelich.de/record/844806/files/2018-04-10-2676101327-Wolfrum.pdf
000844806 8564_ $$uhttps://juser.fz-juelich.de/record/844806/files/2018-04-10-2676101327-Wolfrum.pdf?subformat=pdfa$$xpdfa
000844806 8564_ $$uhttps://juser.fz-juelich.de/record/844806/files/s41528-018-0027-z.pdf$$yOpenAccess
000844806 8564_ $$uhttps://juser.fz-juelich.de/record/844806/files/s41528-018-0027-z.gif?subformat=icon$$xicon$$yOpenAccess
000844806 8564_ $$uhttps://juser.fz-juelich.de/record/844806/files/s41528-018-0027-z.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000844806 8564_ $$uhttps://juser.fz-juelich.de/record/844806/files/s41528-018-0027-z.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000844806 8564_ $$uhttps://juser.fz-juelich.de/record/844806/files/s41528-018-0027-z.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000844806 8767_ $$82676101327$$92018-04-05$$d2018-04-10$$eAPC$$jZahlung erfolgt$$pNPJFLEXELECTRON-00075R1
000844806 909CO $$ooai:juser.fz-juelich.de:844806$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000844806 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161548$$aForschungszentrum Jülich$$b0$$kFZJ
000844806 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161523$$aForschungszentrum Jülich$$b1$$kFZJ
000844806 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161234$$aForschungszentrum Jülich$$b2$$kFZJ
000844806 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161443$$aForschungszentrum Jülich$$b3$$kFZJ
000844806 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138367$$aForschungszentrum Jülich$$b4$$kFZJ
000844806 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b5$$kFZJ
000844806 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich$$b6$$kFZJ
000844806 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000844806 9141_ $$y2018
000844806 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844806 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000844806 920__ $$lyes
000844806 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000844806 9801_ $$aAPC
000844806 9801_ $$aFullTexts
000844806 980__ $$ajournal
000844806 980__ $$aVDB
000844806 980__ $$aUNRESTRICTED
000844806 980__ $$aI:(DE-Juel1)ICS-8-20110106
000844806 980__ $$aAPC
000844806 981__ $$aI:(DE-Juel1)IBI-3-20200312