Journal Article FZJ-2018-02180

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Printed microelectrode arrays on soft materials: from PDMS to hydrogels

 ;  ;  ;  ;  ;  ;

2018
Springer Nature London

npj flexible electronics 2(1), 15 () [10.1038/s41528-018-0027-z]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Microelectrode arrays (MEAs) provide promising opportunities to study electrical signals in neuronal and cardiac cell networks, restore sensory function, or treat disorders of the nervous system. Nevertheless, most of the currently investigated devices rely on silicon or polymer materials, which neither physically mimic nor mechanically match the structure of living tissue, causing inflammatory response or loss of functionality. Here, we present a new method for developing soft MEAs as bioelectronic interfaces. The functional structures are directly deposited on PDMS-, agarose-, and gelatin-based substrates using ink-jet printing as a patterning tool. We demonstrate the versatility of this approach by printing high-resolution carbon MEAs on PDMS and hydrogels. The soft MEAs are used for in vitro extracellular recording of action potentials from cardiomyocyte-like HL-1 cells. Our results represent an important step toward the design of next-generation bioelectronic interfaces in a rapid prototyping approach.

Classification:

Contributing Institute(s):
  1. Bioelektronik (ICS-8)
Research Program(s):
  1. 552 - Engineering Cell Function (POF3-552) (POF3-552)

Appears in the scientific report 2018
Database coverage:
Creative Commons Attribution CC BY 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-3
Workflow collections > Public records
Workflow collections > Publication Charges
ICS > ICS-8
Publications database
Open Access

 Record created 2018-04-03, last modified 2024-06-19