Journal Article FZJ-2018-02406

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Crossover from a Linear to a Branched Growth Regime in the Crystallization of Lysozyme

 ;  ;  ;  ;  ;

2018
ACS Publ. Washington, DC

Crystal growth & design 18(3), 1483 - 1494 () [10.1021/acs.cgd.7b01433]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Using lysozyme as a crystallization model, existing intermediate clusters and aggregates have been previously identified as fractal systems using light scattering techniques. However, this has not been confirmed with neutron or X-ray scattering directly. In this work, we attempt to deepen our knowledge of the role of the fractal clusters during the crystallization process by following the evolution of the fractal dimension df from the early stage of the nucleation process. Indeed, three different scattering techniques have been used simultaneously on the same sample: dynamic light scattering, small-angle neutron scattering, and static light scattering. We focused on the optimal batch crystallization condition in order to obtain large crystals (30 mg/mL lysozyme concentration and 3 wt % sodium chloride at pD 4.75 at 298 K). The selected temperature reduces the nucleation speed allowing us to investigate in detail the very early stage of the crystallization process. A direct temporal change of the fractal dimension df during the initial growth phase of lysozyme was observed with df rising from 1.0 to 1.7 in the first 90 min after initiating the crystallization process. The early phase of crystallization shows remarkable similarities to simulations on colloid aggregation. Long-term dynamic light scattering measurements allowed us to gain some insight into how fractal clusters may contribute during the crystal growth process. These findings help to improve theoretical models of crystal growth and may lead to the growth of larger crystals through a better understanding of the initial nucleation phase.

Keyword(s): Health and Life (1st) ; Biology (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-FRM-II (JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II)
  2. Neutronenstreuung (Neutronenstreuung ; JCNS-1)
Research Program(s):
  1. 6215 - Soft Matter, Health and Life Sciences (POF3-621) (POF3-621)
  2. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)
  3. 6G15 - FRM II / MLZ (POF3-6G15) (POF3-6G15)
Experiment(s):
  1. KWS-2: Small angle scattering diffractometer (NL3ao)

Appears in the scientific report 2018
Database coverage:
Medline ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-FRM-II
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-1
Workflow collections > Public records
Publications database

 Record created 2018-04-13, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)