001     845382
005     20240711085651.0
024 7 _ |a 10.3390/coatings8050176
|2 doi
024 7 _ |a 2128/18717
|2 Handle
024 7 _ |a WOS:000435192400025
|2 WOS
024 7 _ |a altmetric:40875784
|2 altmetric
037 _ _ |a FZJ-2018-02656
082 _ _ |a 660
100 1 _ |a Zhang, Yanli
|0 P:(DE-Juel1)156157
|b 0
245 _ _ |a Laser Cladding of Embedded Sensors for Thermal Barrier Coating Applications
260 _ _ |a Basel
|c 2018
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1527593440_29131
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The accurate real-time monitoring of surface or internal temperatures of thermal barrier coatings (TBCs) in hostile environments presents significant benefits to the efficient and safe operation of gas turbines. A new method for fabricating high-temperature K-type thermocouple sensors on gas turbine engines using coaxial laser cladding technology has been developed. The deposition of the thermocouple sensors was optimized to provide minimal intrusive features to the TBC, which is beneficial for the operational reliability of the protective coatings. Notably, this avoids a melt pool on the TBC surface. Sensors were deposited onto standard yttria-stabilized zirconia (7–8 wt % YSZ) coated substrates; subsequently, they were embedded with second YSZ layers by the Atmospheric Plasma Spray (APS) process. Morphology of cladded thermocouples before and after embedding was optimized in terms of topography and internal homogeneity, respectively. The dimensions of the cladded thermocouple were in the order of 200 microns in thickness and width. The thermal and electrical response of the cladded thermocouple was tested before and after embedding in temperatures ranging from ambient to approximately 450 °C in a furnace. Seebeck coefficients of bared and embedded thermocouples were also calculated correspondingly, and the results were compared to that of a commercial standard K-type thermocouple, which demonstrates that laser cladding is a prospective technology for manufacturing microsensors on the surface of or even embedded into functional coatings.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mack, Daniel Emil
|0 P:(DE-Juel1)129630
|b 1
|e Corresponding author
700 1 _ |a Mauer, Georg
|0 P:(DE-Juel1)129633
|b 2
700 1 _ |a Vaßen, Robert
|0 P:(DE-Juel1)129670
|b 3
773 _ _ |a 10.3390/coatings8050176
|g Vol. 8, no. 5, p. 176 -
|0 PERI:(DE-600)2662314-6
|n 5
|p 176 -
|t Coatings
|v 8
|y 2018
|x 2079-6412
856 4 _ |u https://juser.fz-juelich.de/record/845382/files/Invoice_MDPI_coatings-286335_850.89EUR.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/845382/files/Invoice_MDPI_coatings-286335_850.89EUR.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/845382/files/Invoice_MDPI_coatings-286335_850.89EUR.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/845382/files/Invoice_MDPI_coatings-286335_850.89EUR.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/845382/files/Invoice_MDPI_coatings-286335_850.89EUR.jpg?subformat=icon-640
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/845382/files/Invoice_MDPI_coatings-286335_850.89EUR.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/845382/files/coatings-08-00176-v2.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/845382/files/coatings-08-00176-v2.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/845382/files/coatings-08-00176-v2.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/845382/files/coatings-08-00176-v2.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/845382/files/coatings-08-00176-v2.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/845382/files/coatings-08-00176-v2.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:845382
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156157
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129630
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21