Journal Article FZJ-2018-02656

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Laser Cladding of Embedded Sensors for Thermal Barrier Coating Applications

 ;  ;  ;

2018
MDPI Basel

Coatings 8(5), 176 - () [10.3390/coatings8050176]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The accurate real-time monitoring of surface or internal temperatures of thermal barrier coatings (TBCs) in hostile environments presents significant benefits to the efficient and safe operation of gas turbines. A new method for fabricating high-temperature K-type thermocouple sensors on gas turbine engines using coaxial laser cladding technology has been developed. The deposition of the thermocouple sensors was optimized to provide minimal intrusive features to the TBC, which is beneficial for the operational reliability of the protective coatings. Notably, this avoids a melt pool on the TBC surface. Sensors were deposited onto standard yttria-stabilized zirconia (7–8 wt % YSZ) coated substrates; subsequently, they were embedded with second YSZ layers by the Atmospheric Plasma Spray (APS) process. Morphology of cladded thermocouples before and after embedding was optimized in terms of topography and internal homogeneity, respectively. The dimensions of the cladded thermocouple were in the order of 200 microns in thickness and width. The thermal and electrical response of the cladded thermocouple was tested before and after embedding in temperatures ranging from ambient to approximately 450 °C in a furnace. Seebeck coefficients of bared and embedded thermocouples were also calculated correspondingly, and the results were compared to that of a commercial standard K-type thermocouple, which demonstrates that laser cladding is a prospective technology for manufacturing microsensors on the surface of or even embedded into functional coatings.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)

Appears in the scientific report 2018
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Current Contents - Engineering, Computing and Technology ; DOAJ Seal ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Workflow collections > Public records
Workflow collections > Publication Charges
IEK > IEK-1
Publications database
Open Access

 Record created 2018-04-25, last modified 2024-07-11