000848193 001__ 848193
000848193 005__ 20240313094928.0
000848193 0247_ $$2doi$$a10.3389/fninf.2018.00032
000848193 0247_ $$2Handle$$a2128/18896
000848193 0247_ $$2pmid$$apmid:29937723
000848193 0247_ $$2WOS$$aWOS:000433903200001
000848193 0247_ $$2altmetric$$aaltmetric:41139040
000848193 037__ $$aFZJ-2018-03459
000848193 082__ $$a610
000848193 1001_ $$0P:(DE-HGF)0$$aNowke, Christian$$b0$$eCorresponding author
000848193 245__ $$aToward Rigorous Parameterization of Underconstrained Neural Network Models Through Interactive Visualization and Steering of Connectivity Generation
000848193 260__ $$aLausanne$$bFrontiers Research Foundation$$c2018
000848193 3367_ $$2DRIVER$$aarticle
000848193 3367_ $$2DataCite$$aOutput Types/Journal article
000848193 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563262119_618
000848193 3367_ $$2BibTeX$$aARTICLE
000848193 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000848193 3367_ $$00$$2EndNote$$aJournal Article
000848193 520__ $$aSimulation models in many scientific fields can have non-unique solutions or unique solutions which can be difficult to find. Moreover, in evolving systems, unique final state solutions can be reached by multiple different trajectories. Neuroscience is no exception. Often, neural network models are subject to parameter fitting to obtain desirable output comparable to experimental data. Parameter fitting without sufficient constraints and a systematic exploration of the possible solution space can lead to conclusions valid only around local minima or around non-minima. To address this issue, we have developed an interactive tool for visualizing and steering parameters in neural network simulation models. In this work, we focus particularly on connectivity generation, since finding suitable connectivity configurations for neural network models constitutes a complex parameter search scenario. The development of the tool has been guided by several use cases—the tool allows researchers to steer the parameters of the connectivity generation during the simulation, thus quickly growing networks composed of multiple populations with a targeted mean activity. The flexibility of the software allows scientists to explore other connectivity and neuron variables apart from the ones presented as use cases. With this tool, we enable an interactive exploration of parameter spaces and a better understanding of neural network models and grapple with the crucial problem of non-unique network solutions and trajectories. In addition, we observe a reduction in turn around times for the assessment of these models, due to interactive visualization while the simulation is computed.
000848193 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000848193 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000848193 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000848193 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3
000848193 536__ $$0G:(DE-Juel1)BMBF-01GQ1504B$$aVirtual Connectomics - Deutschland - USA Zusammenarbeit in Computational Science: Mechanistische Zusammenhänge zwischen Struktur und funktioneller Dynamik im menschlichen Gehirn (BMBF-01GQ1504B)$$cBMBF-01GQ1504B$$x4
000848193 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x5
000848193 588__ $$aDataset connected to CrossRef
000848193 7001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b1
000848193 7001_ $$0P:(DE-HGF)0$$aWeyers, Benjamin$$b2
000848193 7001_ $$0P:(DE-HGF)0$$aHentschel, Bernd$$b3
000848193 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b4
000848193 7001_ $$0P:(DE-HGF)0$$aKuhlen, Torsten W.$$b5
000848193 7001_ $$0P:(DE-Juel1)161525$$aPeyser, Alexander$$b6
000848193 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2018.00032$$gVol. 12, p. 32$$p32$$tFrontiers in neuroinformatics$$v12$$x1662-5196$$y2018
000848193 8564_ $$uhttps://juser.fz-juelich.de/record/848193/files/2017-0107735-6.pdf
000848193 8564_ $$uhttps://juser.fz-juelich.de/record/848193/files/2017-0107735-6.gif?subformat=icon$$xicon
000848193 8564_ $$uhttps://juser.fz-juelich.de/record/848193/files/2017-0107735-6.jpg?subformat=icon-1440$$xicon-1440
000848193 8564_ $$uhttps://juser.fz-juelich.de/record/848193/files/2017-0107735-6.jpg?subformat=icon-180$$xicon-180
000848193 8564_ $$uhttps://juser.fz-juelich.de/record/848193/files/2017-0107735-6.jpg?subformat=icon-640$$xicon-640
000848193 8564_ $$uhttps://juser.fz-juelich.de/record/848193/files/fninf-12-00032.pdf$$yOpenAccess
000848193 8564_ $$uhttps://juser.fz-juelich.de/record/848193/files/fninf-12-00032.gif?subformat=icon$$xicon$$yOpenAccess
000848193 8564_ $$uhttps://juser.fz-juelich.de/record/848193/files/fninf-12-00032.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000848193 8564_ $$uhttps://juser.fz-juelich.de/record/848193/files/fninf-12-00032.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000848193 8564_ $$uhttps://juser.fz-juelich.de/record/848193/files/fninf-12-00032.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000848193 8767_ $$82017-0107735-6$$92018-06-08$$d2018-06-12$$eAPC$$jDeposit$$lDeposit: Frontiers$$zStatement: May 2018
000848193 909CO $$ooai:juser.fz-juelich.de:848193$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000848193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b1$$kFZJ
000848193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b4$$kFZJ
000848193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161525$$aForschungszentrum Jülich$$b6$$kFZJ
000848193 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000848193 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000848193 9141_ $$y2018
000848193 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000848193 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000848193 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000848193 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2015
000848193 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000848193 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000848193 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000848193 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000848193 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000848193 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000848193 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000848193 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000848193 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000848193 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1
000848193 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000848193 9801_ $$aAPC
000848193 9801_ $$aFullTexts
000848193 980__ $$ajournal
000848193 980__ $$aVDB
000848193 980__ $$aI:(DE-Juel1)JSC-20090406
000848193 980__ $$aI:(DE-Juel1)INM-6-20090406
000848193 980__ $$aI:(DE-82)080012_20140620
000848193 980__ $$aAPC
000848193 980__ $$aUNRESTRICTED
000848193 981__ $$aI:(DE-Juel1)IAS-6-20130828