Journal Article FZJ-2018-03787

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effect of microstructure on electrical and mechanical properties of La 5.4 WO 12-δ proton conductor

 ;  ;  ;  ;  ;  ;  ;  ;  ;

2018
Elsevier Science Amsterdam [u.a.]

Journal of the European Ceramic Society 38(10), 3527 - 3538 () [10.1016/j.jeurceramsoc.2018.04.009]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: The relationships between microstructural characteristics and electrical as well as mechanical properties of La5.4WO12-δ (LWO54) materials were studied. Polycrystalline LWO54 samples revealed identical transport mechanisms regardless of the sample microstructure. The studied samples show predominately proton conductor behaviour below 800 °C and become predominant n-type and oxygen ion conductors above this temperature. The magnitude of the total conductivity is enhanced with larger grain size and lower porosity. Young’s modulus decreased by 20% with increasing temperature up to 1000 °C regardless of grain size and atmosphere. Fracture strength was determined via ring-on-ring bending tests, yielding values that strongly depended on microstructural characteristics and homogeneity of the microstructure. Elevated temperature deformation studies revealed that creep is governed by cation diffusion mechanism.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. Werkstoffstruktur und -eigenschaften (IEK-2)
Research Program(s):
  1. 111 - Efficient and Flexible Power Plants (POF3-111) (POF3-111)

Appears in the scientific report 2018
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Institute Collections > IMD > IMD-1
Workflow collections > Public records
IEK > IEK-2
IEK > IEK-1
Publications database

 Record created 2018-06-27, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)