Journal Article FZJ-2018-05416

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Why Tin-Doping Enhances the Efficiency of Hematite Photoanodes for Water Splitting-The Full Picture

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2018
Wiley-VCH Weinheim

Advanced functional materials 28(52), 1804472 - () [10.1002/adfm.201804472]

This record in other databases:    

Please use a persistent id in citations: doi:

Abstract: The beneficial effects of Sn(IV) as a dopant in ultrathin hematite (α‐Fe2O3) photoanodes for water oxidation are examined. Different Sn concentration profiles are prepared by alternating atomic layer deposition of Fe2O3 and SnO x . Combined data from spectrophotometry and intensity‐modulated photocurrent spectroscopy yields the individual process efficiencies for light harvesting, charge separation, and charge transfer. The best performing photoanodes are Sn‐doped both on the surface and in the subsurface region and benefit from enhanced charge separation and transfer. Sn‐doping throughout the bulk of the hematite photoanode causes segregation at the grain boundaries and hence a lower overall efficiency. Fe2O3 (0001) and terminations, shown to be dominant by microstructural analysis, are investigated by density functional theory (DFT) calculations. The energetics of surface intermediates during the oxygen evolution reaction (OER) reveal that while Sn‐doping decreases the overpotential on the (0001) surface, the Fe2O3 orientation shows one of the lowest overpotentials reported for hematite so far. Electronic structure calculations demonstrate that Sn‐doping on the surface also enhances the charge transfer efficiency by elimination of surface hole trap states (passivation) and that subsurface Sn‐doping introduces a gradient of the band edges that reinforces the band bending at the semiconductor/electrolyte interface and thus boosts charge separation.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Research Program(s):
  1. 899 - ohne Topic (POF3-899) (POF3-899)

Appears in the scientific report 2018
Database coverage:
Medline ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; IF >= 10 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IMD > IMD-2
Workflow collections > Public records
IEK > IEK-1
Publications database

 Record created 2018-09-20, last modified 2024-07-11


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)