Journal Article FZJ-2018-06571

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Neural Correlates of Hypokinetic Dysarthria and Mechanisms of Effective Voice Treatment in Parkinson Disease

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2018
Sage Thousand Oaks, Calif.

Neurorehabilitation and neural repair 32(12), 1055 –1066 () [10.1177/1545968318812726]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Background. Hypokinetic dysarthria is highly prevalent in idiopathic Parkinson disease (PD), and effectiveness of high-intensity voice treatment is well established. However, the neural correlates remain largely unknown. Objective. We aimed to specify cerebral pathophysiology of hypokinetic dysarthria and treatment-induced changes using functional magnetic resonance imaging (fMRI). Methods. We used fMRI to investigate healthy controls (HCs) and patients with idiopathic PD–associated dysarthria before and after treatment according to the Lee Silverman Voice Treatment LOUD (LSVT). During fMRI, participants covertly read sentences with normal (eg, conversation in a quiet room) or high (eg, shouting on a windy beach) intensity. In addition, we tested LSVT effects on intelligibility and different speech features (intensity, pitch, articulation). Results. LSVT effectively improved intelligibility, articulation, and pitch in patients. Covert high-intensity speech compared with covert normal-intensity speech led to increased activation of mainly secondary motor areas and bilateral superior and medial temporal regions. Prior to LSVT, patients showed less activity in several speech-associated areas compared with HCs. As a neural correlate of effective LSVT, increased right-sided superior temporal activity correlated with improved intelligibility. Conclusion. This is the first brain imaging study using a covert speech paradigm in PD, which revealed cortical hypoactivation as correlate of hypokinetic dysarthria. Furthermore, cortical correlates of effective LSVT treatment colocalized with the neuronal network, showing increased activation during high- versus normal-intensity speech generation.

Classification:

Contributing Institute(s):
  1. Kognitive Neurowissenschaften (INM-3)
Research Program(s):
  1. 572 - (Dys-)function and Plasticity (POF3-572) (POF3-572)

Appears in the scientific report 2018
Database coverage:
Medline ; Allianz-Lizenz ; Clarivate Analytics Master Journal List ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-3
Workflow collections > Public records
Publications database

 Record created 2018-11-20, last modified 2021-01-29


Restricted:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)