001     857993
005     20240619091239.0
024 7 _ |a 10.1109/LMWC.2019.2902952
|2 doi
024 7 _ |a 1051-8207
|2 ISSN
024 7 _ |a 1531-1309
|2 ISSN
024 7 _ |a 1558-1764
|2 ISSN
024 7 _ |a 1558-2329
|2 ISSN
024 7 _ |a WOS:000467572600019
|2 WOS
037 _ _ |a FZJ-2018-06940
082 _ _ |a 620
100 1 _ |a Barannik, Alexander A.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Millimeter-Wave WGM Resonator-Based Characterization of Continuous and Noncontinuous Ultrathin Cu Films
260 _ _ |a New York, NY
|c 2019
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1558004250_2122
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We analyze the experimental data on the evolution of the microwave (MW) response of the whispering gallery mode (WGM) resonator. The focus is on the thickness df variation of the conducting endplates (CEPs) from df exceeding skin layer thickness δs to dfłlδ s down to df = 0, i.e., with no CEPs. The analysis was performed by comparing the numerical simulation results obtained using COMSOL software with the authors' experimental data on the response of the Ka-band sapphire WGM resonator. The nonmonotonic change in the WGM resonator response with decreasing thickness df is explained using the metal-insulator percolation model proposed by Krupka et al. We use a different resonator (quasi-optical) technique and different mode polarization, namely, the HE14 1 δ mode. The artificially introduced discontinuity of the ultrathin film, resulting in a sharp growth of the Q-factor is analogous with the percolation material structure. The revealed effect may be useful for the development of MW devices with dynamically controlled properties of metamaterials.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cherpak, Nickolay T.
|0 0000-0001-5214-5015
|b 1
700 1 _ |a Protsenko, Irina A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vitusevich, Svetlana A.
|0 P:(DE-Juel1)128738
|b 3
|e Corresponding author
773 _ _ |a 10.1109/LMWC.2019.2902952
|g p. 1 - 3
|0 PERI:(DE-600)2025906-2
|n 5
|p 363-365
|t IEEE microwave and wireless components letters
|v 29
|y 2019
|x 1051-8207
856 4 _ |u https://juser.fz-juelich.de/record/857993/files/08674572.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/857993/files/08674572.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:857993
|p VDB
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128738
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE MICROW WIREL CO : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 1 _ |a APC
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21