Journal Article FZJ-2019-01306

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A stepladder approach to a tokamak fusion power plant

 ;  ;  ;  ;  ;  ;  ;

2017
IAEA Vienna

Nuclear fusion 57(8), 086002 - () [10.1088/1741-4326/aa739e]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We present an approach to design in a consistent way a stepladder connecting ITER, DEMO and an FPP, starting from an attractive FPP and then locating DEMO such that main similarity parameters for the core scenario are constant. The approach presented suggests how to use ITER such that DEMO can be extrapolated with maximum confidence and a development path for plasma scenarios in ITER follows from our approach, moving from low β N and q typical for the present Q  =  10 scenario to higher values needed for steady state. A numerical example is given, indicative of the feasibility of the approach, and it is backed up by more detailed 1.5-D calculation using the ASTRA code. We note that ideal MHD stability analysis of the DEMO operating point indicates that it is located between the no-wall and the ideal wall β-limit, which may require active stabilization. The DEMO design could also be a pulsed fallback solution should a stationary operation turn out to be impossible.

Classification:

Contributing Institute(s):
  1. Plasmaphysik (IEK-4)
Research Program(s):
  1. 174 - Plasma-Wall-Interaction (POF3-174) (POF3-174)

Database coverage:
OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IFN > IFN-1
Workflow collections > Public records
IEK > IEK-4
Publications database
Open Access

 Record created 2019-02-07, last modified 2024-07-11