Poster (After Call) FZJ-2019-01785

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Remote Sensing Data Analytics with the Udocker Container Tool using Multi-GPU Deep Learning Systems

 ;  ;  ;

2019

Conference on Big Data from Space (BiDS'19), MunichMunich, Germany, 19 Feb 2019 - 21 Feb 20192019-02-192019-02-21

Please use a persistent id in citations:

Abstract: Multi-GPU systems are in continuous development todeal with the challenges of intensive computational big dataproblems. On the one hand, parallel architectures provide atremendous computation capacity and outstanding scalability.On the other hand, the production path in multi-user environmentsfaces several roadblocks since they do not grant rootprivileges to the users. Containers provide flexible strategiesfor packing, deploying and running isolated applicationprocesses within multi-user systems and enable scientific reproducibility.This paper describes the usage and advantagesthat the uDocker container tool offers for the developmentof deep learning models in the described context. The experimentalresults show that uDocker is more transparent todeploy for less tech-savvy researchers and allows the applicationto achieve processing time with negligible overheadcompared to an uncontainerized environment.


Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 512 - Data-Intensive Science and Federated Computing (POF3-512) (POF3-512)
  2. DEEP-EST - DEEP - Extreme Scale Technologies (754304) (754304)
  3. DEEP-HybridDataCloud - Designing and Enabling E-infrastructures for intensive Processing in a Hybrid DataCloud (777435) (777435)

Appears in the scientific report 2019
Database coverage:
OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Präsentationen > Poster
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2019-03-08, letzte Änderung am 2021-01-30


Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)