| Home > Publications database > Dual-Phase Cathodes for Metal-Supported Solid Oxide Fuel Cells: Processing, Performance, Durability |
| Journal Article | FZJ-2019-02842 |
; ; ; ; ; ; ;
2019
Electrochemical Soc.
Pennington, NJ
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/22151 doi:10.1149/2.0561908jes
Abstract: Cathode processing is one of the main challenges in the manufacturing of metal-supported solid oxide fuel cells (MSCs). Cathodesintering in ambient air is not applicable to MSCs, as oxidation of the metal substrate and the metallic Ni of the anode damagesthe cell. A recently developed ex situ sintering procedure for the LSCF cathode in an argon atmosphere was shown to significantlyimprove cathode adherence. However, the stability of the sintered cathode layer posed a challenge during storage in ambient air. In thepresent work, adapting the ex situ sintering approach to LSC/GDC dual-phase cathodes not only enabled the ex situ sintering processto be applied to LSC-based cathodes, but also resulted in the superior stability of the cathode after sintering. Despite the hygroscopicproperties of the partially decomposed perovskite, LSC/GDC dual-phase cathodes were shown to withstand more than 1 year ofstorage in ambient air without failure. Electrochemical single-cell measurements and post-test analysis confirmed the reversibilityof phase transformations and the electrochemical activity of such dual-phase cathodes. Current densities of 1.30 A cm−2 at 750°C,0.85 A cm−2 at 700°C, and 0.54 A cm−2 at 650°C were obtained at a cell voltage of 0.7 V.
|
The record appears in these collections: |