001     862706
005     20240711101509.0
024 7 _ |a 10.1016/j.elecom.2019.05.003
|2 doi
024 7 _ |a 1388-2481
|2 ISSN
024 7 _ |a 1873-1902
|2 ISSN
024 7 _ |a 2128/22254
|2 Handle
024 7 _ |a WOS:000471194300012
|2 WOS
037 _ _ |a FZJ-2019-02957
082 _ _ |a 540
100 1 _ |a Kulikovsky, Andrei
|0 P:(DE-Juel1)129878
|b 0
|e Corresponding author
245 _ _ |a The effect of Nafion film on the cathode catalyst layer performance in a low–Pt PEM fuel cell
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1559898154_30497
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A single–pore model for performance of the cathode catalyst layer (CCL) in a PEM fuel cell is developed. The model takes into account oxygen transport though the CCL depth and through the thin Nafion film, separating the pore from Pt/C species. Analytical solution to model equations reveals the limiting current density $j^{lim}_{N}$ due to oxygen transport through the Nafion film. Further, $j^{lim}_{N}$ linearly depends of the CCL thickness, i.e., the thinner the CCL, the lower $j^{lim}_{N}$. This result may explain unexpected lowering of low–Pt loaded catalyst layers performance, which has been widely discussing in literature.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
773 _ _ |a 10.1016/j.elecom.2019.05.003
|g p. S1388248119301110
|0 PERI:(DE-600)2027290-X
|p 61 - 65
|t Electrochemistry communications
|v 103
|y 2019
|x 1388-2481
856 4 _ |u https://juser.fz-juelich.de/record/862706/files/W1507126.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862706/files/1-s2.0-S1388248119301110-main.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/862706/files/W1507126.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862706/files/1-s2.0-S1388248119301110-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862706
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129878
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHEM COMMUN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21