Journal Article FZJ-2019-03189

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Osteopontin Attenuates Secondary Neurodegeneration in the Thalamus after Experimental Stroke

 ;  ;  ;  ;  ;  ;  ;  ;

2019
Springer Boston, MA [u.a.]

Journal of neuroImmune pharmacology 14(2), 295 - 311 () [10.1007/s11481-018-9826-1]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Cortical cerebral ischemia elicits neuroinflammation as well as secondary neuronal degeneration in remote areas. Locally distinct and specific secondary neurodegeneration affecting thalamic nuclei connected to cortical areas highlights such processes. Osteopontin (OPN) is a cytokine-like glycoprotein that is excreted in high amounts after cerebral ischemia and exerts various immunomodulatory functions. We here examined putative protective effects of OPN in secondary thalamic degeneration. We subjected male Wistar rats to photothrombosis and subsequently injected OPN or placebo intracerebroventricularly. Immunohistochemical and fluorescence staining was used to detect the extent of neuronal degeneration and microglia activation. Ex vivo autoradiography with radiotracers available for human in vivo PET studies, i.e., cis-4-[18F]Fluor-d-Proline (D-cis-[18F]FPro), and [6-3H]thymidine ([3H]thymidine), confirmed degeneration and proliferation, respectively. We found secondary neurodegeneration in the thalamus characterized by microglial activation and neuronal loss. Neuronal loss was restricted to areas of microglial infiltration. Treatment with OPN significantly decreased neurodegeneration, inflammation and microglial proliferation. Microglia displayed morphological signs of activation without expressing markers of M1 or M2 polarization. D-cis-[18F]FPro-uptake mirrored attenuated degeneration in OPN-treated animals. Notably, [3H]thymidine and BrdU-staining revealed increased stem cell proliferation after treatment with OPN. The data suggest that OPN is able to ameliorate secondary neurodegeneration in thalamic nuclei. These effects can be visualized by radiotracers D-cis-[18F]FPro and [3H]thymidine, opening new vistas for translational studies.

Classification:

Contributing Institute(s):
  1. Physik der Medizinischen Bildgebung (INM-4)
  2. Kognitive Neurowissenschaften (INM-3)
Research Program(s):
  1. 573 - Neuroimaging (POF3-573) (POF3-573)

Appears in the scientific report 2019
Database coverage:
Medline ; Embargoed OpenAccess ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > INM > INM-3
Institute Collections > INM > INM-4
Workflow collections > Public records
Publications database
Open Access

 Record created 2019-06-05, last modified 2021-01-30


Published on 2018-11-28. Available in OpenAccess from 2019-11-28.:
Download fulltext PDF Download fulltext PDF (PDFA)
(additional files)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)