% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@INPROCEEDINGS{Senk:863678,
author = {Senk, Johanna and Kriener, Birgit and Hagen, Espen and Bos,
Hannah and Plesser, Hans Ekkehard and Gewaltig, Marc-Oliver
and Diesmann, Markus and Djurfeldt, Mikael and Voges, Nicole
and van Albada, Sacha},
title = {{C}onnectivity {C}oncepts for {N}euronal {N}etworks},
reportid = {FZJ-2019-03684},
year = {2019},
abstract = {A statement like “$N_\text{s}$ source neurons and
$N_\text{t}$ target neurons are connected randomly with
connectionprobability $p$” may be used to describe the
structure of a neuronal network model, but itsinterpretation
is inherently ambiguous. A lacking detail is, for example,
information on thedistribution of in- and outgoing
connections, resulting in substantial differences in
networkdynamics. For reproducible research, unambiguous
network descriptions and correspondingalgorithmic
implementations are necessary [1]. Here, we review
simulation software (e.g., NEST[2]), specification languages
(e.g., CSA [3]), and published network models made available
by thecommunity in databases like ModelDB [4] and Open
Source Brain [5]. We investigate the networkstructures
computational neuroscientists use in their models and the
terminology they use todescribe these models. From this, we
derive a set of connectivity concepts providing modelers
withguidelines to specify connectivity in a complete and
concise way. Furthermore, this work aims toguide the
comprehensive and efficient implementation of connection
routines in simulationsoftware like NEST, thereby
facilitating reproducible research on network
models.$\qquad$References: $\qquad$1. Nordlie E, et al.
(2009) Towards Reproducible Descriptions of Neuronal Network
Models. PLoS Comput Biol. 5(8): e1000456.
doi:10.1371/journal.pcbi.1000456 $\qquad$2. Gewaltig M-O and
Diesmann M (2007). NEST (NEural Simulation Tool).
Scholarpedia. 2(4):1430, doi:10.4249/scholarpedia.1430
$\qquad$3. Djurfeldt M (2012) The Connection-set Algebra—A
Novel Formalism for the Representation of Connectivity
Structure in Neuronal Network Models. Neuroinform.
10:287–304. doi:10.1007/s12021-012-9146-1 $\qquad$4.
ModelDB [https://senselab.med.yale.edu/modeldb] $\qquad$5.
Gleeson P, Cantarelli M, Marin B, . . . van Albada SJ, van
Geit W, R Silver RA (in press) Open Source Brain: a
collaborative resource for visualizing, analyzing,
simulating and developing standardized models of neurons and
circuits. Neuron.},
month = {Jun},
date = {2019-06-24},
organization = {NEST Conference 2019, Aas (Norway), 24
Jun 2019 - 25 Jun 2019},
subtyp = {After Call},
cin = {INM-6 / IAS-6 / INM-10},
cid = {I:(DE-Juel1)INM-6-20090406 / I:(DE-Juel1)IAS-6-20130828 /
I:(DE-Juel1)INM-10-20170113},
pnm = {571 - Connectivity and Activity (POF3-571) / HBP SGA1 -
Human Brain Project Specific Grant Agreement 1 (720270) /
HBP SGA2 - Human Brain Project Specific Grant Agreement 2
(785907) / Brain-Scale Simulations $(jinb33_20121101)$ / SPP
2041 347572269 - Integration von Multiskalen-Konnektivität
und Gehirnarchitektur in einem supercomputergestützten
Modell der menschlichen Großhirnrinde (347572269) /
Advanced Computing Architectures $(aca_20190115)$},
pid = {G:(DE-HGF)POF3-571 / G:(EU-Grant)720270 /
G:(EU-Grant)785907 / $G:(DE-Juel1)jinb33_20121101$ /
G:(GEPRIS)347572269 / $G:(DE-Juel1)aca_20190115$},
typ = {PUB:(DE-HGF)24},
url = {https://juser.fz-juelich.de/record/863678},
}