% IMPORTANT: The following is UTF-8 encoded. This means that in the presence % of non-ASCII characters, it will not work with BibTeX 0.99 or older. % Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or % “biber”. @INPROCEEDINGS{Senk:863678, author = {Senk, Johanna and Kriener, Birgit and Hagen, Espen and Bos, Hannah and Plesser, Hans Ekkehard and Gewaltig, Marc-Oliver and Diesmann, Markus and Djurfeldt, Mikael and Voges, Nicole and van Albada, Sacha}, title = {{C}onnectivity {C}oncepts for {N}euronal {N}etworks}, reportid = {FZJ-2019-03684}, year = {2019}, abstract = {A statement like “$N_\text{s}$ source neurons and $N_\text{t}$ target neurons are connected randomly with connectionprobability $p$” may be used to describe the structure of a neuronal network model, but itsinterpretation is inherently ambiguous. A lacking detail is, for example, information on thedistribution of in- and outgoing connections, resulting in substantial differences in networkdynamics. For reproducible research, unambiguous network descriptions and correspondingalgorithmic implementations are necessary [1]. Here, we review simulation software (e.g., NEST[2]), specification languages (e.g., CSA [3]), and published network models made available by thecommunity in databases like ModelDB [4] and Open Source Brain [5]. We investigate the networkstructures computational neuroscientists use in their models and the terminology they use todescribe these models. From this, we derive a set of connectivity concepts providing modelers withguidelines to specify connectivity in a complete and concise way. Furthermore, this work aims toguide the comprehensive and efficient implementation of connection routines in simulationsoftware like NEST, thereby facilitating reproducible research on network models.$\qquad$References: $\qquad$1. Nordlie E, et al. (2009) Towards Reproducible Descriptions of Neuronal Network Models. PLoS Comput Biol. 5(8): e1000456. doi:10.1371/journal.pcbi.1000456 $\qquad$2. Gewaltig M-O and Diesmann M (2007). NEST (NEural Simulation Tool). Scholarpedia. 2(4):1430, doi:10.4249/scholarpedia.1430 $\qquad$3. Djurfeldt M (2012) The Connection-set Algebra—A Novel Formalism for the Representation of Connectivity Structure in Neuronal Network Models. Neuroinform. 10:287–304. doi:10.1007/s12021-012-9146-1 $\qquad$4. ModelDB [https://senselab.med.yale.edu/modeldb] $\qquad$5. Gleeson P, Cantarelli M, Marin B, . . . van Albada SJ, van Geit W, R Silver RA (in press) Open Source Brain: a collaborative resource for visualizing, analyzing, simulating and developing standardized models of neurons and circuits. Neuron.}, month = {Jun}, date = {2019-06-24}, organization = {NEST Conference 2019, Aas (Norway), 24 Jun 2019 - 25 Jun 2019}, subtyp = {After Call}, cin = {INM-6 / IAS-6 / INM-10}, cid = {I:(DE-Juel1)INM-6-20090406 / I:(DE-Juel1)IAS-6-20130828 / I:(DE-Juel1)INM-10-20170113}, pnm = {571 - Connectivity and Activity (POF3-571) / HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) / HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) / Brain-Scale Simulations $(jinb33_20121101)$ / SPP 2041 347572269 - Integration von Multiskalen-Konnektivität und Gehirnarchitektur in einem supercomputergestützten Modell der menschlichen Großhirnrinde (347572269) / Advanced Computing Architectures $(aca_20190115)$}, pid = {G:(DE-HGF)POF3-571 / G:(EU-Grant)720270 / G:(EU-Grant)785907 / $G:(DE-Juel1)jinb33_20121101$ / G:(GEPRIS)347572269 / $G:(DE-Juel1)aca_20190115$}, typ = {PUB:(DE-HGF)24}, url = {https://juser.fz-juelich.de/record/863678}, }