000863872 001__ 863872
000863872 005__ 20240619091249.0
000863872 0247_ $$2doi$$a10.1371/journal.pone.0219356
000863872 0247_ $$2Handle$$a2128/22675
000863872 0247_ $$2pmid$$apmid:31276546
000863872 0247_ $$2WOS$$aWOS:000484936300069
000863872 037__ $$aFZJ-2019-03843
000863872 082__ $$a610
000863872 1001_ $$0P:(DE-Juel1)168292$$aAchtsnicht, Stefan$$b0
000863872 245__ $$aSensitive and rapid detection of cholera toxin subunit B using magnetic frequency mixing detection
000863872 260__ $$aSan Francisco, California, US$$bPLOS$$c2019
000863872 3367_ $$2DRIVER$$aarticle
000863872 3367_ $$2DataCite$$aOutput Types/Journal article
000863872 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1567775870_14354
000863872 3367_ $$2BibTeX$$aARTICLE
000863872 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863872 3367_ $$00$$2EndNote$$aJournal Article
000863872 520__ $$aCholera is a life-threatening disease caused by the cholera toxin (CT) as produced by some Vibrio cholerae serogroups. In this research we present a method which directly detects the toxin’s B subunit (CTB) in drinking water. For this purpose we performed a magnetic sandwich immunoassay inside a 3D immunofiltration column. We used two different commercially available antibodies to capture CTB and for binding to superparamagnetic beads. ELISA experiments were performed to select the antibody combination. The beads act as labels for the magnetic frequency mixing detection technique. We show that the limit of detection depends on the type of magnetic beads. A nonlinear Hill curve was fitted to the calibration measurements by means of a custom-written python software. We achieved a sensitive and rapid detection of CTB within a broad concentration range from 0.2 ng/ml to more than 700 ng/ml.
000863872 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000863872 588__ $$aDataset connected to CrossRef
000863872 7001_ $$0P:(DE-HGF)0$$aNeuendorf, Christian$$b1
000863872 7001_ $$0P:(DE-Juel1)165702$$aFassbender, Tobias$$b2
000863872 7001_ $$0P:(DE-HGF)0$$aNölke, Greta$$b3
000863872 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b4
000863872 7001_ $$0P:(DE-Juel1)128697$$aKrause, Hans-Joachim$$b5$$eCorresponding author
000863872 7001_ $$00000-0002-2490-3728$$aSchröper, Florian$$b6$$eCorresponding author
000863872 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0219356$$gVol. 14, no. 7, p. e0219356 -$$n7$$pe0219356 -$$tPLOS ONE$$v14$$x1932-6203$$y2019
000863872 8564_ $$uhttps://juser.fz-juelich.de/record/863872/files/journal.pone.0219356.pdf$$yOpenAccess
000863872 8564_ $$uhttps://juser.fz-juelich.de/record/863872/files/journal.pone.0219356.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863872 8767_ $$8PAB244754$$92019-07-02$$d2019-07-17$$eAPC$$jDeposit$$lDeposit: PLoS$$pPONE-D-1907289$$z1595 USD
000863872 909CO $$ooai:juser.fz-juelich.de:863872$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000863872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168292$$aForschungszentrum Jülich$$b0$$kFZJ
000863872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165702$$aForschungszentrum Jülich$$b2$$kFZJ
000863872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b4$$kFZJ
000863872 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128697$$aForschungszentrum Jülich$$b5$$kFZJ
000863872 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000863872 9141_ $$y2019
000863872 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863872 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000863872 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000863872 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863872 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000863872 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2017
000863872 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000863872 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000863872 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863872 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863872 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863872 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863872 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863872 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000863872 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863872 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000863872 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863872 920__ $$lyes
000863872 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000863872 9801_ $$aAPC
000863872 9801_ $$aFullTexts
000863872 980__ $$ajournal
000863872 980__ $$aVDB
000863872 980__ $$aUNRESTRICTED
000863872 980__ $$aI:(DE-Juel1)ICS-8-20110106
000863872 980__ $$aAPC
000863872 981__ $$aI:(DE-Juel1)IBI-3-20200312