001     864467
005     20240619091250.0
024 7 _ |a 10.3390/s19163566
|2 doi
024 7 _ |a 2128/22709
|2 Handle
024 7 _ |a pmid:31443310
|2 pmid
024 7 _ |a WOS:000484407200123
|2 WOS
037 _ _ |a FZJ-2019-04248
082 _ _ |a 620
100 1 _ |a Huang, Xiaolei
|0 P:(DE-Juel1)128697
|b 0
245 _ _ |a Sensor Configuration and Algorithms for Power-Line Interference Suppression in Low Field Nuclear Magnetic Resonance
260 _ _ |a Basel
|c 2019
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568031226_22204
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Low field (LF) nuclear magnetic resonance (NMR) shows potential advantages to study pure heteronuclear J-coupling and observe the fine structure of matter. Power-line harmonics interferences and fixed-frequency noise peaks might introduce discrete noise peaks into the LF-NMR spectrum in an open environment or in a conductively shielded room, which might disturb J-coupling spectra of matter recorded at LF. In this paper, we describe a multi-channel sensor configuration of superconducting quantum interference devices, and measure the multiple peaks of the 2,2,2-trifluoroethanol J-coupling spectrum. For the case of low signal to noise ratio (SNR) < 1, we suggest two noise suppression algorithms using discrete wavelet analysis (DWA), combined with either least squares method (LSM) or gradient descent (GD). The de-noising methods are based on spatial correlation of the interferences among the superconducting sensors, and are experimentally demonstrated. The DWA-LSM algorithm shows a significant effect in the noise reduction and recovers SNR > 1 for most of the signal peaks. The DWA-GD algorithm improves the SNR further, but takes more computational time. Depending on whether the accuracy or the speed of the de-noising process is more important in LF-NMR applications, the choice of algorithm should be made
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dong, Hui
|0 0000-0002-6444-1134
|b 1
|e Corresponding author
700 1 _ |a Tao, Quan
|0 P:(DE-Juel1)169638
|b 2
700 1 _ |a Yu, Mengmeng
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Li, Yongqiang
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rong, Liangliang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Krause, Hans-Joachim
|0 P:(DE-Juel1)128697
|b 6
|e Corresponding author
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 7
|u fzj
700 1 _ |a Xie, Xiaoming
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.3390/s19163566
|g Vol. 19, no. 16, p. 3566 -
|0 PERI:(DE-600)2052857-7
|n 16
|p 3566 -
|t Sensors
|v 19
|y 2019
|x 1424-8220
856 4 _ |u https://juser.fz-juelich.de/record/864467/files/Invoice_MDPI_sensors-566693_1128.13EUR.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/864467/files/Invoice_MDPI_sensors-566693_1128.13EUR.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/864467/files/sensors-19-03566-v2.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/864467/files/sensors-19-03566-v2.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:864467
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)128697
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128697
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SENSORS-BASEL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21