Journal Article FZJ-2019-04248

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Sensor Configuration and Algorithms for Power-Line Interference Suppression in Low Field Nuclear Magnetic Resonance

 ;  ;  ;  ;  ;  ;  ;  ;

2019
MDPI Basel

Sensors 19(16), 3566 - () [10.3390/s19163566]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Low field (LF) nuclear magnetic resonance (NMR) shows potential advantages to study pure heteronuclear J-coupling and observe the fine structure of matter. Power-line harmonics interferences and fixed-frequency noise peaks might introduce discrete noise peaks into the LF-NMR spectrum in an open environment or in a conductively shielded room, which might disturb J-coupling spectra of matter recorded at LF. In this paper, we describe a multi-channel sensor configuration of superconducting quantum interference devices, and measure the multiple peaks of the 2,2,2-trifluoroethanol J-coupling spectrum. For the case of low signal to noise ratio (SNR) < 1, we suggest two noise suppression algorithms using discrete wavelet analysis (DWA), combined with either least squares method (LSM) or gradient descent (GD). The de-noising methods are based on spatial correlation of the interferences among the superconducting sensors, and are experimentally demonstrated. The DWA-LSM algorithm shows a significant effect in the noise reduction and recovers SNR > 1 for most of the signal peaks. The DWA-GD algorithm improves the SNR further, but takes more computational time. Depending on whether the accuracy or the speed of the de-noising process is more important in LF-NMR applications, the choice of algorithm should be made

Classification:

Contributing Institute(s):
  1. Bioelektronik (ICS-8)
Research Program(s):
  1. 523 - Controlling Configuration-Based Phenomena (POF3-523) (POF3-523)

Appears in the scientific report 2019
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-3
Workflow collections > Public records
Workflow collections > Publication Charges
ICS > ICS-8
Publications database
Open Access

 Record created 2019-08-14, last modified 2024-06-19