000865035 001__ 865035 000865035 005__ 20230426083211.0 000865035 0247_ $$2doi$$a10.1103/PhysRevB.100.115113 000865035 0247_ $$2ISSN$$a0163-1829 000865035 0247_ $$2ISSN$$a0556-2805 000865035 0247_ $$2ISSN$$a1050-2947 000865035 0247_ $$2ISSN$$a1094-1622 000865035 0247_ $$2ISSN$$a1095-3795 000865035 0247_ $$2ISSN$$a1098-0121 000865035 0247_ $$2ISSN$$a1538-4489 000865035 0247_ $$2ISSN$$a1550-235X 000865035 0247_ $$2ISSN$$a2469-9950 000865035 0247_ $$2ISSN$$a2469-9969 000865035 0247_ $$2Handle$$a2128/22724 000865035 0247_ $$2WOS$$aWOS:000485192000001 000865035 037__ $$aFZJ-2019-04600 000865035 082__ $$a530 000865035 1001_ $$0P:(DE-HGF)0$$aNeroni, A.$$b0 000865035 245__ $$aFirst-principles calculation of the effective on-site Coulomb interaction parameters for Sr2 ABO6 (A = Cr, Mn, Fe, Co, Ni, and B = Mo, W) double perovskites 000865035 260__ $$aWoodbury, NY$$bInst.$$c2019 000865035 3367_ $$2DRIVER$$aarticle 000865035 3367_ $$2DataCite$$aOutput Types/Journal article 000865035 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568041046_22201 000865035 3367_ $$2BibTeX$$aARTICLE 000865035 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000865035 3367_ $$00$$2EndNote$$aJournal Article 000865035 520__ $$aDouble perovskites (DPs) are a large family of compounds that exhibit a wide range of properties of both fundamental and potential technological interest. Due to the presence of 3d,4d, or 5d transition metal atoms with narrow t2g and eg bands in DPs, the correlation effects play an important role for the properties of these materials, leading to diverse physical phenomena, such as colossal magnetoresistance, ferroelectricity, magnetism, and superconductivity. By employing the constrained random-phase approximation within the full-potential linearized augmented-plane-wave method, we have calculated the effective on-site Coulomb interaction parameters between localized d electrons in Sr2ABO6(A=Cr,Mn,Fe,Co,Ni, and B=Mo,W) DPs. We find that the correlated subspace can be defined to contain only the eg states in Ni-based compounds, leading to a simple two-band low-energy model, whereas at least an eight-orbital (d+t2g) model is necessary for the other compounds. Except for Ni, the U values for A sites in Mo (W) based compounds are around 4 eV (4.5 eV), and they are almost independent of the 3d electron number, while the U for Mo (W) t2g electrons slightly decreases with increasing 3d electron number, from 3 to 2.5 eV. Moreover, our calculations reveal that the contribution of the 3d→3d channel to the total electronic screening is larger in DPs than the corresponding contribution in elementary transition metals 000865035 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0 000865035 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1 000865035 542__ $$2Crossref$$i2019-09-06$$uhttps://link.aps.org/licenses/aps-default-license 000865035 588__ $$aDataset connected to CrossRef 000865035 7001_ $$0P:(DE-HGF)0$$aŞaşıoğlu, E.$$b1$$eCorresponding author 000865035 7001_ $$0P:(DE-HGF)0$$aHadipour, H.$$b2 000865035 7001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b3$$ufzj 000865035 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b4$$ufzj 000865035 7001_ $$0P:(DE-HGF)0$$aMertig, I.$$b5 000865035 7001_ $$0P:(DE-Juel1)130799$$aLežaić, M.$$b6$$ufzj 000865035 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.100.115113$$bAmerican Physical Society (APS)$$d2019-09-06$$n11$$p115113$$tPhysical Review B$$v100$$x2469-9950$$y2019 000865035 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.100.115113$$gVol. 100, no. 11, p. 115113$$n11$$p115113$$tPhysical review / B$$v100$$x2469-9950$$y2019 000865035 8564_ $$uhttps://juser.fz-juelich.de/record/865035/files/PhysRevB.100.115113.pdf$$yOpenAccess 000865035 8564_ $$uhttps://juser.fz-juelich.de/record/865035/files/PhysRevB.100.115113.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000865035 909CO $$ooai:juser.fz-juelich.de:865035$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000865035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b3$$kFZJ 000865035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b4$$kFZJ 000865035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130799$$aForschungszentrum Jülich$$b6$$kFZJ 000865035 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0 000865035 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1 000865035 9141_ $$y2019 000865035 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000865035 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000865035 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000865035 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017 000865035 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000865035 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000865035 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000865035 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000865035 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000865035 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000865035 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000865035 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000865035 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000865035 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0 000865035 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1 000865035 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2 000865035 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3 000865035 980__ $$ajournal 000865035 980__ $$aVDB 000865035 980__ $$aUNRESTRICTED 000865035 980__ $$aI:(DE-Juel1)IAS-1-20090406 000865035 980__ $$aI:(DE-Juel1)PGI-1-20110106 000865035 980__ $$aI:(DE-82)080009_20140620 000865035 980__ $$aI:(DE-82)080012_20140620 000865035 9801_ $$aFullTexts 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/19/2/023201 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmmm.2003.12.484 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.020404 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3350907 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c1cp20626e 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemmater.5b02386 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.024410 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3185 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.125119 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.054415 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.104418 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.054417 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.235102 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.93.035129 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jp303632z 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/22/34/345602 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/12/11/307 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.045103 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.075103 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.53.2512 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.43.7570 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.035105 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.235113 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.195104 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.125106 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.146401 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.085122 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.155134 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.121101 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.236805 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.045132 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.165124 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.165118 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.174422 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.085117 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.155452 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.165105 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.075130 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/b926757c 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.12847 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2007.11.016 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.035120 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.125102 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.054434 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.48.16929 000865035 999C5 $$1V. Anisimov$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-04826-5$$y2010 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.166403 000865035 999C5 $$2Crossref$$oThe LDA+DMFT Approach to Strongly Correlated Materials 2011$$tThe LDA+DMFT Approach to Strongly Correlated Materials$$y2011 000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/27167