000865035 001__ 865035
000865035 005__ 20230426083211.0
000865035 0247_ $$2doi$$a10.1103/PhysRevB.100.115113
000865035 0247_ $$2ISSN$$a0163-1829
000865035 0247_ $$2ISSN$$a0556-2805
000865035 0247_ $$2ISSN$$a1050-2947
000865035 0247_ $$2ISSN$$a1094-1622
000865035 0247_ $$2ISSN$$a1095-3795
000865035 0247_ $$2ISSN$$a1098-0121
000865035 0247_ $$2ISSN$$a1538-4489
000865035 0247_ $$2ISSN$$a1550-235X
000865035 0247_ $$2ISSN$$a2469-9950
000865035 0247_ $$2ISSN$$a2469-9969
000865035 0247_ $$2Handle$$a2128/22724
000865035 0247_ $$2WOS$$aWOS:000485192000001
000865035 037__ $$aFZJ-2019-04600
000865035 082__ $$a530
000865035 1001_ $$0P:(DE-HGF)0$$aNeroni, A.$$b0
000865035 245__ $$aFirst-principles calculation of the effective on-site Coulomb interaction parameters for Sr2 ABO6 (A = Cr, Mn, Fe, Co, Ni, and B = Mo, W) double perovskites
000865035 260__ $$aWoodbury, NY$$bInst.$$c2019
000865035 3367_ $$2DRIVER$$aarticle
000865035 3367_ $$2DataCite$$aOutput Types/Journal article
000865035 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568041046_22201
000865035 3367_ $$2BibTeX$$aARTICLE
000865035 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000865035 3367_ $$00$$2EndNote$$aJournal Article
000865035 520__ $$aDouble perovskites (DPs) are a large family of compounds that exhibit a wide range of properties of both fundamental and potential technological interest. Due to the presence of 3d,4d, or 5d transition metal atoms with narrow t2g and eg bands in DPs, the correlation effects play an important role for the properties of these materials, leading to diverse physical phenomena, such as colossal magnetoresistance, ferroelectricity, magnetism, and superconductivity. By employing the constrained random-phase approximation within the full-potential linearized augmented-plane-wave method, we have calculated the effective on-site Coulomb interaction parameters between localized d electrons in Sr2ABO6(A=Cr,Mn,Fe,Co,Ni, and B=Mo,W) DPs. We find that the correlated subspace can be defined to contain only the eg states in Ni-based compounds, leading to a simple two-band low-energy model, whereas at least an eight-orbital (d+t2g) model is necessary for the other compounds. Except for Ni, the U values for A sites in Mo (W) based compounds are around 4 eV (4.5 eV), and they are almost independent of the 3d electron number, while the U for Mo (W) t2g electrons slightly decreases with increasing 3d electron number, from 3 to 2.5 eV. Moreover, our calculations reveal that the contribution of the 3d→3d channel to the total electronic screening is larger in DPs than the corresponding contribution in elementary transition metals
000865035 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000865035 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000865035 542__ $$2Crossref$$i2019-09-06$$uhttps://link.aps.org/licenses/aps-default-license
000865035 588__ $$aDataset connected to CrossRef
000865035 7001_ $$0P:(DE-HGF)0$$aŞaşıoğlu, E.$$b1$$eCorresponding author
000865035 7001_ $$0P:(DE-HGF)0$$aHadipour, H.$$b2
000865035 7001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b3$$ufzj
000865035 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b4$$ufzj
000865035 7001_ $$0P:(DE-HGF)0$$aMertig, I.$$b5
000865035 7001_ $$0P:(DE-Juel1)130799$$aLežaić, M.$$b6$$ufzj
000865035 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.100.115113$$bAmerican Physical Society (APS)$$d2019-09-06$$n11$$p115113$$tPhysical Review B$$v100$$x2469-9950$$y2019
000865035 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.100.115113$$gVol. 100, no. 11, p. 115113$$n11$$p115113$$tPhysical review / B$$v100$$x2469-9950$$y2019
000865035 8564_ $$uhttps://juser.fz-juelich.de/record/865035/files/PhysRevB.100.115113.pdf$$yOpenAccess
000865035 8564_ $$uhttps://juser.fz-juelich.de/record/865035/files/PhysRevB.100.115113.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000865035 909CO $$ooai:juser.fz-juelich.de:865035$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000865035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b3$$kFZJ
000865035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b4$$kFZJ
000865035 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130799$$aForschungszentrum Jülich$$b6$$kFZJ
000865035 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000865035 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000865035 9141_ $$y2019
000865035 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000865035 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000865035 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000865035 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000865035 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000865035 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000865035 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000865035 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000865035 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000865035 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000865035 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000865035 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000865035 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000865035 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000865035 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000865035 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000865035 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000865035 980__ $$ajournal
000865035 980__ $$aVDB
000865035 980__ $$aUNRESTRICTED
000865035 980__ $$aI:(DE-Juel1)IAS-1-20090406
000865035 980__ $$aI:(DE-Juel1)PGI-1-20110106
000865035 980__ $$aI:(DE-82)080009_20140620
000865035 980__ $$aI:(DE-82)080012_20140620
000865035 9801_ $$aFullTexts
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/19/2/023201
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmmm.2003.12.484
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.020404
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3350907
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/c1cp20626e
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemmater.5b02386
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.024410
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3185
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.125119
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.054415
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.104418
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.054417
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.235102
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.93.035129
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jp303632z
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/22/34/345602
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/12/11/307
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.045103
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.075103
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.53.2512
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.43.7570
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.035105
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.235113
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.195104
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.125106
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.146401
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.085122
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.155134
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.121101
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.236805
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.045132
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.165124
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.165118
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.174422
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.085117
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.155452
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.165105
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.075130
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/b926757c
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.12847
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2007.11.016
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.035120
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.125102
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.054434
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.48.16929
000865035 999C5 $$1V. Anisimov$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-642-04826-5$$y2010
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.166403
000865035 999C5 $$2Crossref$$oThe LDA+DMFT Approach to Strongly Correlated Materials 2011$$tThe LDA+DMFT Approach to Strongly Correlated Materials$$y2011
000865035 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/27167