Home > Publications database > First-principles calculation of the effective on-site Coulomb interaction parameters for Sr2 ABO6 (A = Cr, Mn, Fe, Co, Ni, and B = Mo, W) double perovskites |
Journal Article | FZJ-2019-04600 |
; ; ; ; ; ;
2019
Inst.
Woodbury, NY
This record in other databases:
Please use a persistent id in citations: http://hdl.handle.net/2128/22724 doi:10.1103/PhysRevB.100.115113
Abstract: Double perovskites (DPs) are a large family of compounds that exhibit a wide range of properties of both fundamental and potential technological interest. Due to the presence of 3d,4d, or 5d transition metal atoms with narrow t2g and eg bands in DPs, the correlation effects play an important role for the properties of these materials, leading to diverse physical phenomena, such as colossal magnetoresistance, ferroelectricity, magnetism, and superconductivity. By employing the constrained random-phase approximation within the full-potential linearized augmented-plane-wave method, we have calculated the effective on-site Coulomb interaction parameters between localized d electrons in Sr2ABO6(A=Cr,Mn,Fe,Co,Ni, and B=Mo,W) DPs. We find that the correlated subspace can be defined to contain only the eg states in Ni-based compounds, leading to a simple two-band low-energy model, whereas at least an eight-orbital (d+t2g) model is necessary for the other compounds. Except for Ni, the U values for A sites in Mo (W) based compounds are around 4 eV (4.5 eV), and they are almost independent of the 3d electron number, while the U for Mo (W) t2g electrons slightly decreases with increasing 3d electron number, from 3 to 2.5 eV. Moreover, our calculations reveal that the contribution of the 3d→3d channel to the total electronic screening is larger in DPs than the corresponding contribution in elementary transition metals
![]() |
The record appears in these collections: |