Journal Article FZJ-2019-04826

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Topologically stable helices in exchange coupled rare-earth/rare-earth multilayer with superspin-glass like ordering

 ;  ;  ;  ;

2019
Springer Nature London

Communications Physics 2(1), 114 () [10.1038/s42005-019-0210-0]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Existence of 2π-planar domain walls (DWs) are often reported for transition metal-rare-earth(TM/RE) layered systems. The magnetization process of such two-dimensional randomlyanisotropical system in the form of 2π-DWs is directly correlated with topologically stablehelices. Here, instead of TM/RE, we have investigated [Dy/Tb]10multilayers involving twodifferent anisotropic layers of rare-earth/rare-earth (RE/RE). Using magnetization and sus-ceptibility as function of temperature along with thermo-remanent magnetization measure-ments we have confirmed superspin-glass type of behavior within this RE/RE system.Additionally, an exchange biasfield up to–0.88 kOe (–88 mT) was also revealed for suchrare-earth based multilayers. Interestingly, using detailed analysis of the polarized neutronreflectometry profiles, wefind evidences of superimposed helical magnetic configurationswithin both materials of Dy and Tb associated with spin-frustrated interfaces. Furthermore,magnetizationfluctuations around the mean magnetization from vertically uncorrelateddomains were observed with polarized off-specular neutron scattering. We believe that coexistence of helical ground states with super spin-glass-like ordering are fundamentally instrumental for topologically stability in RE/RE systems, which in principle, can be exploited in all-spin-based technology.

Keyword(s): Magnetic Materials (1st) ; Magnetism (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-FRM-II (JCNS-FRM-II)
  2. Streumethoden (JCNS-2)
  3. Heinz Maier-Leibnitz Zentrum (MLZ)
Research Program(s):
  1. 6G15 - FRM II / MLZ (POF3-6G15) (POF3-6G15)
  2. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)
Experiment(s):
  1. MARIA: Magnetic reflectometer with high incident angle (NL5N)

Appears in the scientific report 2019
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Emerging Sources Citation Index ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-FRM-II
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2019-09-24, last modified 2021-01-31