Journal Article FZJ-2019-05144

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Low-glutathione mutants are impaired in growth but do not show an increased sensitivity to moderate water deficit

 ;  ;  ;  ;  ;  ;  ;

2019
PLOS San Francisco, California, US

PLOS ONE 14(10), e0220589 - () [10.1371/journal.pone.0220589]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Glutathione is considered a key metabolite for stress defense and elevated levels have frequently been proposed to positively influence stress tolerance. To investigate whether glutathione affects plant performance and the drought tolerance of plants, wild-type Arabidopsis plants and an allelic series of five mutants (rax1, pad2, cad2, nrc1, and zir1) with reduced glutathione contents between 21 and 63% compared to wild-type glutathione content were phenotypically characterized for their shoot growth under control and water-limiting conditions using a shoot phenotyping platform. Under non-stress conditions the zir1 mutant with only 21% glutathione showed a pronounced dwarf phenotype. All other mutants with intermediate glutathione contents up to 62% in contrast showed consistently slightly smaller shoots than the wild-type. Moderate drought stress imposed through water withdrawal until shoot growth ceased showed that wild-type plants and all mutants responded similarly in terms of chlorophyll fluorescence and growth retardation. These results lead to the conclusion that glutathione is important for general plant performance but that the glutathione content does not affect tolerance to moderate drought conditions typically experienced by crops in the field.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2019
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2019-10-21, last modified 2021-01-30