Journal Article FZJ-2019-05267

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Noncollinear magnetic structure and anisotropic magnetoelastic coupling in cobalt pyrovanadate Co 2 V 2 O 7g4

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2019
Inst. Woodbury, NY

Physical review / B 100(13), 134420 () [10.1103/PhysRevB.100.134420]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Co2V2O7 was recently reported to exhibit remarkable magnetic-field-induced magnetization plateaus and ferroelectricity [R. Chen et al., Phys. Rev. B 98, 184404 (2018)], but its magnetic ground state remains ambiguous. Magnetometry measurements and time-of-flight neutron powder diffraction (NPD) have been employed to study the structural and magnetic properties of Co2V2O7, which includes two nonequivalent Co sites. Upon cooling below the Néel temperature TN=6.0(2) K, we observe magnetic Bragg peaks at 2 K in NPD, which indicates the formation of long-range magnetic order of Co2+ moments. After symmetry analysis and magnetic structure refinement, we demonstrate that Co2V2O7 possesses a complicated noncollinear magnetic ground state with Co moments mainly located in the b-c plane and forming a noncollinear spin-chain-like structure along the c-axis. The ab initio calculations demonstrate that the noncollinear magnetic structure is more stable than various ferromagnetic states at low temperature. The noncollinear magnetic structure with a canted ↑↑↓↓ spin configuration is considered to be the origin of magnetoelectric coupling in Co2V2O7 because the inequivalent exchange striction induced by the spin-exchange interaction between the neighboring spins could be the driving force of ferroelectricity. It is also found that the deviation of lattice parameters a and b is opposite below TN, while the lattice parameter c and β stay almost constant below TN, evidencing the anisotropic magnetoelastic coupling in Co2V2O7.

Keyword(s): Basic research (1st) ; Magnetism (2nd)

Classification:

Contributing Institute(s):
  1. Streumethoden (JCNS-2)
  2. Streumethoden (PGI-4)
  3. JARA-FIT (JARA-FIT)
  4. JCNS-FRM-II (JCNS-FRM-II)
Research Program(s):
  1. 144 - Controlling Collective States (POF3-144) (POF3-144)
  2. 524 - Controlling Collective States (POF3-524) (POF3-524)
  3. 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621) (POF3-621)
  4. 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621) (POF3-621)
  5. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)
Experiment(s):
  1. Measurement at external facility

Appears in the scientific report 2019
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-FRM-II
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-2
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-4
Workflow collections > Public records
Publications database
Open Access

 Record created 2019-10-28, last modified 2025-01-29