Journal Article FZJ-2019-05549

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Review of crosshole ground-penetrating radar full-waveform inversion of experimental data: Recent developments, challenges, and pitfalls

 ;  ;

2019
GeoScienceWorld Alexandria, Va.

Geophysics 84(6), H13 - H28 () [10.1190/geo2018-0597.1]

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Heterogeneous small-scale high-contrast layers and spatial variabilities of soil properties can have a large impact on flow and transport processes in the critical zone. Because their characterization is difficult and critical, high-resolution methods are required. Standard ray-based approaches for imaging the subsurface consider only a small amount of the measured data and suffer from limited resolution. In contrast, full-waveform inversion (FWI) considers the full information content of the measured data and could yield higher resolution images in the subwavelength scale. In the past few decades, ground-penetrating radar (GPR) FWI and its application to experimental data have matured, which makes GPR FWI an established approach to significantly improve resolution. Several theoretical developments were achieved to improve the application to experimental data from crosshole GPR FWI. We have determined the necessary steps to perform FWI for experimental data to obtain reliable and reproducible high-resolution images. We concentrate on experimental crosshole GPR data from a test site in Switzerland to illustrate the challenges of applying FWI to experimental data and discuss the obtained results for different development steps including possible pitfalls. Thereby, we acknowledge out the importance of a correct time-zero correction of the data, the estimation of the effective source wavelet, and the effect of the choice of starting models. The reliability of the FWI results is investigated by analyzing the fit of the measured and modeled traces, the remaining gradients of the final models, and validating with independently measured logging data. Thereby, we found that special care needs to be taken to define the optimal inversion parameters to avoid overshooting of the inversion or truncation errors.

Classification:

Contributing Institute(s):
  1. Agrosphäre (IBG-3)
  2. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) (POF3-255)
  2. Better predictions with environmental simulation models: optimally integrating new data sources (jicg41_20100501) (jicg41_20100501)

Appears in the scientific report 2019
Database coverage:
Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-HPC
Institute Collections > IBG > IBG-3
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database

 Record created 2019-11-13, last modified 2022-09-30


Fulltext:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)