Journal Article FZJ-2019-05670

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A Spectral Fitting Algorithm to Retrieve the Fluorescence Spectrum from Canopy Radiance

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2019
MDPI Basel

Remote sensing 11(16), 1840 - () [10.3390/rs11161840]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Retrieval of Sun-Induced Chlorophyll Fluorescence (F) spectrum is one of the challenging perspectives for further advancing F studies towards a better characterization of vegetation structure and functioning. In this study, a simplified Spectral Fitting retrieval algorithm suitable for retrieving the F spectrum with a limited number of parameters is proposed (two parameters for F). The novel algorithm is developed and tested on a set of radiative transfer simulations obtained by coupling SCOPE and MODTRAN5 codes, considering different chlorophyll content, leaf area index and noise levels to produce a large variability in fluorescence and reflectance spectra. The retrieval accuracy is quantified based on several metrics derived from the F spectrum (i.e., red and far-red peaks, O2 bands and spectrally-integrated values). Further, the algorithm is employed to process experimental field spectroscopy measurements collected over different crops during a long-lasting field campaign. The reliability of the retrieval algorithm on experimental measurements is evaluated by cross-comparison with F values computed by an independent retrieval method (i.e., SFM at O2 bands). For the first time, the evolution of the F spectrum along the entire growing season for a forage crop is analyzed and three diverse F spectra are identified at different growing stages. The results show that red F is larger for young canopy; while red and far-red F have similar intensity in an intermediate stage; finally, far-red F is significantly larger for the rest of the season

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2019
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2019-11-19, last modified 2021-01-30