Journal Article FZJ-2019-05989

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Deciphering Root Architectural Traits Involved to Cope With Water Deficit in Oat

 ;  ;  ;  ;

2019
Frontiers Media88991 Lausanne

Frontiers in Functional Plant Ecology 10, 1558 () [10.3389/fpls.2019.01558]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Drought tolerance is a complex phenomenon comprising many physiological, biochemical and morphological changes at both aerial and below ground levels. We aim to reveal changes on root morphology that promote drought tolerance in oat in both seedling and adult plants. To this aim, we employed two oat genotypes, previously characterized as susceptible and tolerant to drought. Root phenotyping was carried out on young plants grown either in pots or in rhizotrons under controlled environments, and on adult plants grown in big containers under field conditions. Overall, the tolerant genotype showed an increased root length, branching rate, root surface, and length of fine roots, while coarse to fine ratio decreased as compared with the susceptible genotype. We also observed a high and significant correlation between various morphological root traits within and between experiments, identifying several of them as appropriate markers to identify drought tolerant oat genotypes. Stimulation of fine root growth was one of the most prominent responses to cope with gradual soil water depletion, in both seedlings and adult plants. Although seedling experiments did not exactly match the response of adult plants, they were similarly informative for discriminating between tolerant and susceptible genotypes. This might contribute to easier and faster phenotyping of large amount of plants.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2019
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; NCBI Molecular Biology Database
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2019-11-28, last modified 2021-01-30