Journal Article FZJ-2019-06193

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Self-Assembly of a Midblock-Sulfonated Pentablock Copolymer in Mixed Organic Solvents: A Combined SAXS and SANS Analysis

 ;  ;  ;  ;  ;

2019
ACS Publ. Washington, DC

Langmuir 35(4), 1032 - 1039 () [10.1021/acs.langmuir.8b03825]

This record in other databases:      

Please use a persistent id in citations: doi:

Abstract: Ionic, and specifically sulfonated, block copolymers are continually gaining interest in the soft materials community due to their unique suitability in various ion-exchange applications such as fuel cells, organic photovoltaics, and desalination membranes. One unresolved challenge inherent to these materials is solvent templating, that is, the translation of self-assembled solution structures into nonequilibrium solid film morphologies. Recently, the use of mixed polar/nonpolar organic solvents has been examined in an effort to elucidate and control the solution self-assembly of sulfonated block copolymers. The current study sheds new light on micellar assemblies (i.e., those with the sulfonated blocks comprising the micellar core) of a midblock-sulfonated pentablock copolymer in polar/nonpolar solvent mixtures by combining small-angle X-ray and small-angle neutron scattering. Our scattering data reveal that micelle size depends strongly on overall solvent composition: micelle cores and coronae grow as the fraction of nonpolar solvent is increased. Universal model fits further indicate that an unexpectedly high fraction of the micelle cores is occupied by polar solvent (60–80 vol %) and that partitioning of the polar solvent into micelle cores becomes more pronounced as its overall quantity decreases. This solvent presence in the micelle cores explains the simultaneous core/corona growth, which is otherwise counterintuitive. Our findings provide a potential pathway for the formation of solvent-templated films with more interconnected morphologies due to the greatly solvated micellar cores in solution, thereby enhancing the molecular, ion, and electron-transport properties of the resultant films.

Keyword(s): Chemical Reactions and Advanced Materials (1st) ; Soft Condensed Matter (2nd) ; Chemistry (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-FRM-II (JCNS-FRM-II)
  2. Neutronenstreuung (JCNS-1)
  3. Heinz Maier-Leibnitz Zentrum (MLZ)
Research Program(s):
  1. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)
  2. 6G15 - FRM II / MLZ (POF3-6G15) (POF3-6G15)
Experiment(s):
  1. KWS-2: Small angle scattering diffractometer (NL3ao)

Appears in the scientific report 2019
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Institutssammlungen > JCNS > JCNS-FRM-II
Institutssammlungen > JCNS > JCNS-1
Workflowsammlungen > Öffentliche Einträge
Publikationsdatenbank

 Datensatz erzeugt am 2019-12-04, letzte Änderung am 2021-01-30


Restricted:
Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)