Journal Article FZJ-2020-00087

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
kramersmoyal: Kramers--Moyal coefficients for stochastic processes

 ;

2019

The journal of open source software 4(44), 1693 - () [10.21105/joss.01693]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: kramersmoyal is a python library to extract the Kramers--Moyal coefficients from timeseries of any dimension and to any desired order. This package employs a non-parametric Nadaraya--Watson estimator, i.e., kernel-density estimators, to retrieve the drift, diffusion, and higher-order moments of stochastic timeseries of any dimension.

Classification:

Contributing Institute(s):
  1. Systemforschung und Technologische Entwicklung (IEK-STE)
Research Program(s):
  1. 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153) (POF3-153)
  2. ES2050 - Energie Sytem 2050 (ES2050) (ES2050)
  3. VH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014) (VH-NG-1025_20112014)

Appears in the scientific report 2019
Database coverage:
Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; DOAJ Seal
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Workflowsammlungen > Öffentliche Einträge
IEK > IEK-STE
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-01-09, letzte Änderung am 2021-01-30


OpenAccess:
Volltext herunterladen PDF
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)