Journal Article FZJ-2020-00128

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Implicit Monotone Difference Methods for Scalar Conservation Laws with Source Terms

 ;

2020
Springer Singapore Singapore

Acta mathematica Vietnamica 45(3), 709–738 () [10.1007/s40306-019-00354-1]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: In this article, a concept of implicit methods for scalar conservation laws in one or more spatial dimensions allowing also for source terms of various types is presented. This material is a significant extension of previous work of the first author (Breuß SIAM J. Numer. Anal. 43(3), 970–986 2005). Implicit notions are developed that are centered around a monotonicity criterion. We demonstrate a connection between a numerical scheme and a discrete entropy inequality, which is based on a classical approach by Crandall and Majda. Additionally, three implicit methods are investigated using the developed notions. Next, we conduct a convergence proof which is not based on a classical compactness argument. Finally, the theoretical results are confirmed by various numerical tests.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)

Appears in the scientific report 2020
Database coverage:
Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Emerging Sources Citation Index ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Dokumenttypen > Aufsätze > Zeitschriftenaufsätze
Workflowsammlungen > Öffentliche Einträge
Institutssammlungen > JSC
Publikationsdatenbank
Open Access

 Datensatz erzeugt am 2020-01-13, letzte Änderung am 2021-01-30


Published on 2020-01-10. Available in OpenAccess from 2021-01-10.:
breusskleefeldR1 - Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
1609.08861 - Volltext herunterladen PDF Volltext herunterladen PDF (PDFA)
(zusätzliche Dateien)
Externer link:
Volltext herunterladenFulltext by OpenAccess repository
Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)