Journal Article FZJ-2020-00252

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Insights into Water Interaction at the Interface of Nitrogen-Functionalized Hydrothermal Carbons

 ;  ;  ;  ;  ;  ;  ;  ;

2019
Soc. Washington, DC

The journal of physical chemistry <Washington, DC> / C C, Nanomaterials and interfaces 123(41), 25146 - 25156 () [10.1021/acs.jpcc.9b05323]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Hydrothermal carbon (HTC) derived from biomass is a class of cost-efficient, eco-friendly functional carbon materials with various potential applications. In this work, solid-state nuclear magnetic resonance (NMR), longitudinal (T1) relaxation time, and diffusion NMR were employed to investigate the structure and water dynamics for HTC and nitrogen-functionalized hydrothermal carbon (N-HTC) samples ((N)-HTC). Results showed that the presence of N-functional groups influences the water interaction with (N)-HTC more strongly than surface area, pore size distribution, or oxygenated functional groups. Furthermore, the degree of water interaction can be tuned by adjusting the synthesis temperature and the precursor ratio. Water motion was more strongly inhibited in N-HTC than in N-free HTC, thereby suggesting the existence of a differently structured hydration shell around N-HTC particles. In addition, the diffusion data of water in the N-HTC material show two components that do not exchange on the time scale of the experiment (tens of milliseconds), indicating a significant fraction of slow mobile water that exists inside the structure of N-HTC. 1H–2H isotope exchange and cross-polarization NMR results show this internal water only in a near-surface layer of the N-HTC particles. Based on these findings, a model for water interaction with (N)-HTC particles is proposed.

Classification:

Contributing Institute(s):
  1. Grundlagen der Elektrochemie (IEK-9)
Research Program(s):
  1. 131 - Electrochemical Storage (POF3-131) (POF3-131)

Appears in the scientific report 2019
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IET > IET-1
Workflow collections > Public records
IEK > IEK-9
Publications database
Open Access

 Record created 2020-01-15, last modified 2024-07-12