Journal Article FZJ-2020-00978

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational Conditions

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
MDPI Basel

Remote sensing 12(3), 514 - () [10.3390/rs12030514]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Compact multi-spectral sensors that can be mounted on lightweight drones are now widely available and applied within the geo- and environmental sciences. However; the spatial consistency and radiometric quality of data from such sensors is relatively poorly explored beyond the lab; in operational settings and against other sensors. This study explores the extent to which accurate hemispherical-conical reflectance factors (HCRF) and vegetation indices (specifically: normalised difference vegetation index (NDVI) and chlorophyll red-edge index (CHL)) can be derived from a low-cost multispectral drone-mounted sensor (Parrot Sequoia). The drone datasets were assessed using reference panels and a high quality 1 m resolution reference dataset collected near-simultaneously by an airborne imaging spectrometer (HyPlant). Relative errors relating to the radiometric calibration to HCRF values were in the 4 to 15% range whereas deviations assessed for a maize field case study were larger (5 to 28%). Drone-derived vegetation indices showed relatively good agreement for NDVI with both HyPlant and Sentinel 2 products (R2 = 0.91). The HCRF; NDVI and CHL products from the Sequoia showed bias for high and low reflective surfaces. The spatial consistency of the products was high with minimal view angle effects in visible bands. In summary; compact multi-spectral sensors such as the Parrot Sequoia show good potential for use in index-based vegetation monitoring studies across scales but care must be taken when assuming derived HCRF to represent the true optical properties of the imaged surface.

Classification:

Contributing Institute(s):
  1. Pflanzenwissenschaften (IBG-2)
Research Program(s):
  1. 582 - Plant Science (POF3-582) (POF3-582)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-02-08, last modified 2021-01-30