Journal Article FZJ-2020-00995

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Average spectrum method for analytic continuation: Efficient blocked-mode sampling and dependence on the discretization grid

 ;

2020
Inst. Woodbury, NY

Physical review / B 101(8), 085111 () [10.1103/PhysRevB.101.085111]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The average spectrum method is a promising approach for the analytic continuation of imaginary time or frequency data to the real axis. It determines the analytic continuation of noisy data from a functional average over all admissible spectral functions, weighted by how well they fit the data. Its main advantage is the apparent lack of adjustable parameters and smoothness constraints, using instead the information on the statistical noise in the data. Its main disadvantage is the enormous computational cost of performing the functional integral. Here we introduce an efficient implementation, based on the singular value decomposition of the integral kernel, eliminating this problem. It allows us to analyze the behavior of the average spectrum method in detail. We find that the discretization of the real-frequency grid, on which the spectral function is represented, biases the results. The distribution of the grid points plays the role of a default model while the number of grid points acts as a regularization parameter. We give a quantitative explanation for this behavior, point out the crucial role of the default model and provide a practical method for choosing it, making the average spectrum method a reliable and efficient technique for analytic continuation.

Classification:

Contributing Institute(s):
  1. Jülich Supercomputing Center (JSC)
Research Program(s):
  1. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)

Appears in the scientific report 2020
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Workflow collections > Public records
Institute Collections > JSC
Publications database
Open Access

 Record created 2020-02-10, last modified 2023-04-26


OpenAccess:
PhysRevB.101.085111-1 - Download fulltext PDF Download fulltext PDF (PDFA)
stochs - Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)